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Abstract

Industrial water pollution is high inmany developing countries but often receives less atten-
tion than air and domestic water pollution. We estimate the costs of industrial water pollution
to agriculture in India, focusing on 48 industrial sites identified by the central government as
“severely polluted.” We exploit the spatial discontinuity in pollution concentrations that these
sites generate along a river. First, we show that these sites do coincide with a large, sudden rise
in pollutant concentrations in the nearest river. Then, we find that a remote sensing measure
of crop yields is no lower in villages immediately downstream of polluting sites, relative to
villages upstream of the same site in the same year. Downstream farmers switch irrigation
sources from rivers and canals to wells in some specifications, suggesting costly input substi-
tution may avert pollution damages. Damages to agriculture may not represent a major cost of
water pollution, though many other social costs are not yet quantified.
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1 Introduction

Pollution levels in low- and middle-income countries are often orders of magnitude worse than in

high-income countries. Simple linear extrapolation suggests the costs to health, productivity, and

ecology could be high – and they could be even higher if they are nonlinear, as some evidence sug-

gests, with marginal costs increasing in pollution levels (Arceo et al. 2016). Unfortunately, most

causal evidence on the costs of pollution comes from developed countries, with little basis to ex-

trapolate to developing settings. Water pollution in particular has received less attention from both

researchers and the public than air pollution. In India, while regulation on air pollution may have

reduced some air pollutants due to public pressure, similarly strict regulation has not discernibly

improved water quality (Greenstone and Hanna 2014). Toxic white foam now forms annually on

water bodies in New Delhi and Bengaluru (Möller-Gulland 2018), and mass fish deaths have be-

come common (Vyas 2022).

Even in high-income countries, the social costs of water pollution have been challenging to

quantify. While surveys show high levels of public interest in water quality, research has rarely

found economically significant impacts of water pollution. This could be because the costs truly

are low, or alternatively because water pollution is especially difficult to study. Low quality and

availability of pollution measurements, the difficulty of modeling complex spatial relationships,

and the wide variety of distinct pollutants may have both inhibited research and attenuated estimates

that do exist (Keiser and Shapiro 2019b).

This paper estimates the effects of industrial water pollution on agricultural production in India.

We study agriculture because several reasons suggest it could be the site of large aggregate effects

of water pollution. Agriculture uses four times more water than all other sectors of the economy

combined (FAO 2018), and irrigation water is rarely treated before use, unlike drinking water. The

agricultural sector is also large and ubiquitous, so it can be found near virtually every source of

pollution. We focus on 48 industrial sites identified by India’s Central Pollution Control Board in

2009 as “severely polluted” with respect to water pollution. India’s industrial clusters are home

to some of the greatest concentrations of industrial pollution in the world (Mohan 2021), so if

2



industrial water pollution matters anywhere, it likely matters here.

Our research design exploits the fact that water pollution, unlike air pollution, almost always

flows in only one direction from its source. When industrial wastewater is released into a flowing

river, it creates a spatial discontinuity in pollution concentrations along that river. Areas imme-

diately downstream of a heavily polluting industrial site will have higher pollution levels than

areas immediately upstream, yet they are likely similar otherwise. This makes upstream areas a

reasonable counterfactual for the downstream areas in studying the impacts of water pollution on

economic outcomes. We use hydrological modeling to precisely determine areas that are upstream

and downstream and compute spatial relationships.

Importantly, we measure the overall effect of high-polluting industrial sites, rather than specific

pollutants. This approach allows us to sidestep the need to rely on water quality monitoring data,

which are generally plagued by noise, infrequency, low spatial density, and site selection bias. They

are also difficult to summarize, since industrial effluents can contain thousands of distinct elements

and compounds. Any of these could independently harm human, crop, or ecosystem health, but

each typically requires a separate laboratory test to measure.

To measure agricultural outcomes, our main analysis relies on satellite data. No other data

source is available at high enough spatial resolution to enable a spatial regression discontinuity

design; even in the United States, aggregate statistics are too coarse and agricultural surveys too

sparse. As proxies for agricultural output, we use remote sensing indices developed by earth scien-

tists to measure vegetation density, plant health, and metabolic activity. These vegetation indices

have been shown to reliably predict crop yields across a range of settings (Running et al. 2004;

Burke and Lobell 2017; Lobell et al. 2022; Asher and Novosad 2020). We use these indices to

build a predictive model of crop yields, following Lobell et al. (2020), and calibrate it using aggre-

gate statistics. In our data, each index individually predicts crop yields, and combining them forms

better predictions than any individual index. From the combined model, we generate fitted values

for each village in our sample.

We show three sets of results. First, we quantify the water pollution released by India’s
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“severely polluted” industrial sites, using the available monitoring station data. We show that

there is a large, discontinuous increase in water pollution at these exact locations, raising omnibus

measures of pollution in nearby rivers by 56 to 130 percent. The amount of water pollution

released by these sites has not previously been estimated in publicly available sources.

Second, we find that our measure of crop yields, as predicted by remote sensing, is no lower

in villages immediately downstream of high-polluting industrial sites than in comparable upstream

villages in the same year. Confidence intervals for some specifications exclude yield reductions of

0.7 percent, suggesting that even the localized effects of industrial water pollution are small. Even

in areas closest to rivers or near the largest industrial clusters, we do not detect pollution impacts.

Third, we find mixed evidence that farmers respond to industrial water pollution by switching

irrigation sources from surface water to groundwater, and expanding irrigation overall. This sug-

gests that the reason crop yields appear unharmedmay be because farmers are adapting to industrial

water pollution through costly input substitution.

Our study focuses on crop yields and does not imply that industrial water pollution is not costly.

Even if output is unaffected, farmers may incur substantial averting expenditures in order to ensure

that outcome. There are also many types of potential social costs that we do not quantify, including

harm to ecosystems as well as to human health. Contaminated irrigation water may harm farmers

and farm laborers who are exposed to it. Produce may take up heavy metals or other toxins, harm-

ing consumers even if yields are unaffected. These costs are outside the scope of this paper and

important objects of future research.

This paper contributes evidence to three specific aspects of the costs of pollution. First, it

studies the costs of water pollution from industrial sources. A large literature studies domestic water

pollution in the context of drinking water (Olmstead 2010), while some papers study the effects of

water pollution from all sources (Keiser and Shapiro 2019a) or agricultural sources (Brainerd and

Menon 2014). Less evidence exists on industrial water pollution; exceptions include Ebenstein

(2012) and Do et al. (2018), which find effects on cancer in China and infant mortality in India.

Second, this paper studies how pollution affects the agricultural sector. Prior work on agriculture

4



focuses on the effects of air pollution (Burney and Ramanathan 2014; Aragón and Rud 2016),

but there are physiological reasons to expect water pollution could harm crops as well. Third,

this paper contributes to the effects of pollution specifically in low- and middle-income counties

(Jayachandran 2009; Chen et al. 2013; Greenstone and Jack 2015; Adhvaryu et al. 2022).

This paper also contributes to a broader understanding of structural transformation and the

relationship between industry and agriculture in low- and middle-income countries. Much existing

literature focuses on input reallocation between sectors (Ghatak and Mookherjee 2014; Bustos et

al. 2016), while this paper studies a non-pecuniary externality from industry to agriculture.

Finally, this paper makes progress in spatial computation methods for studying water pollution.

In the United States, researchers can rely on the National Hydrography Dataset (Keiser and Shapiro

2019a; Keiser 2019; Andarge 2020; Taylor and Druckenmiller 2022; Jerch 2022; Flynn andMarcus

2021), the product of a vast modeling effort by the U.S. Geological Survey. Elsewhere, it can be

difficult even to conceptually define upstream and downstream relationships, let alone compute

them. We describe three specific challenges and how we overcome them. Alongside that of Garg

et al. (2018), our approach may be useful to researchers studying water pollution in other settings.

2 Background on Water Pollution and Crop Growth

Manufacturing plants like those in India produce a variety of waste chemicals which, if untreated or

insufficiently treated, will reach surface or ground water systems. These chemicals include organic

chemicals including petroleum products and chlorinated hydrocarbons; heavy metals including

cadmium, lead, copper, mercury, selenium, and chromium; salts and other inorganic compounds

and ions; and acidity or alkalinity. Many of these products are carcinogenic or otherwise toxic in

sufficient quantities to humans and other plants and animals.

Agricultural crops are no exception. Biologically, it is well known that plant growth is sensitive

to salinity, pH (i.e., acidity and alkalinity), heavymetals, and toxic organic compounds. In addition,

oil and grease can block soil interstices, interfering with the ability of roots to draw water (Scott
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et al. 2004). Chlorine in particular can cause leaf tip burn. Pollutants, especially heavy metals,

harm by accumulating in the soil over long periods of time, but they can also harm directly through

irrigation (Hussain et al. 2002). Agronomic field experiments confirm reduced yields and crop

quality from irrigation with industrially polluted water. Experiments have found rice to have more

damaged grains and disagreeable taste, wheat to have lower protein content, and in general, plant

height, leaf area, and dry matter to be reduced (World Bank and State Environmental Protection

Administration 2007).

By how much should we expect crop yields to fall downstream of the polluted industrial clus-

ters? The answer will vary depends on the dose, exposure, and the particular mix of pollutants. We

can provide a few reference points from agronomic studies on exposure to heavy metals. (Yang et

al. 2021) found that a high dose of cadmium reduced total plant biomass of a Chinese medicinal

plant by 50% within a year, relative to the control group that was not exposed. (Garzón et al. 2011)

found that aluminium exposure reduced maize root growth by 40% within 24 hours of exposure.

(Sharma and Sharma 1993) document chromium exposure reduced number of leaves in each wheat

plant by 50%, while (Wallace et al. 1976) find that dry leaf yield in Bush bean plant decreased by

45% after chromium exposure.

A few small case studies suggest that the findings of field experiments extend to real-world

settings. Reddy and Behera (2006) found an 88% decline in cultivated area in a village immediately

downstream of an industrial cluster in Andhra Pradesh, India. Lindhjem et al. (2007) found that

farmland irrigated with wastewater had lower corn and wheat production quantity and quality in

Shijiazhuang, Hebei Province, China. Khai and Yabe (2013) found that areas in Can Tho, Vietnam

irrigated with industrially polluted water had 12 percent lower yields and 26 percent lower profits.

History also suggests that crop loss from industrial water pollution is not unknown to farmers;

Patancheru, Andhra Pradesh saw massive farmer protests and a grassroots lawsuit in the late 1980s

(Murty and Kumar 2011).

In contrast with industrial wastewater, domestic or municipal wastewater can sometimes have

positive effects on crop growth due to the nutrient value (Hussain et al. 2002). This is especially
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true for treated municipal wastewater. However, undiluted untreated wastewater can in fact have

levels of nitrogen, phosphorous, and potassium that are so high they harm crop growth, and it poses

health risks to agricultural workers, potentially reducing labor supply.

How does water pollution reach crops? Possible exposure channels are through (a) surface wa-

ter irrigation, using water pumped directly from a river; (b) surface water irrigation, using water

from a canal that diverts water from the river; (c) groundwater irrigation, using water pumped from

underground aquifers that may have been contaminated either through direct seepage or from sur-

face water sources; or (d) soil contamination, from groundwater in areas with high water tables.

Each of these exposure channels may produce different spatial patterns of treatment intensity, de-

pending on topography, geology, soils, infrastructure, and irrigation practices, and they can operate

over long time spans.

We cannot directly observe these exposure channels, since water and soil pollution is poorly

monitored in India as in most of the world. Instead, we remain agnostic. Our research design

captures the average effect of being downstream of a heavily-polluting industrial site, regardless of

how the pollution arrives. The design is based on hydrological modeling of surface water flows,

but surface water and groundwater are typically interconnected, and their flow gradients usually

move together.

3 Research Design

Point sources of water pollution, such as industrial clusters, present a natural setting for a regres-

sion discontinuity design. Since water flows in only one direction, pollution levels immediately

downstream of the point source will be discontinuously higher than pollution levels immediately

upstream of the source.

Figure 1 illustrates this sharp discontinuity. It is an aerial photograph of one site in our sample:

the Nazafgarh Drain Basin on the Yamuna River just north of New Delhi. The river flows from

north to south and enters the image at the top with a green color. In the center of the image,
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an industrial effluent channel meets the river, discontinuously turning the river black. Although

color is neither a sufficient nor necessary condition for any specific pollutant, the color difference

confirms the presence of water from a different source, and color is correlated with water pollution.

Remote sensing measures, which include visible light as well as a broader range of wavelengths,

are becoming increasingly common in water quality monitoring (Gholizadeh et al. 2016).

3.1 Sample selection and treatment definition

The intuition for our research design is to compare agricultural outcomes in villages downstream

of heavily-polluting industrial sites with those in villages upstream of the same sites. Although

the idea is simple, translating it to precise definitions of “upstream” and “downstream” is less

straightforward.

Our solution is illustrated in Figure 3. This figure shows our research design for one site in

our sample: Bhillai-Durg, a major industrial city in the state of Chhattisgarh. The center of this

industrial site is represented by the orange dot.

To construct a sample of villages for the RD design, we use hydrological modeling to find

a “reference” flow line (shown in blue). This is a continuous streamflow path (from source to

ocean) that satisfies three criteria: (1) it receives drainage from the industrial site, (2) it extends

upstream into areas unaffected by the site, and (3) the point at which the drainage enters the stream

is relatively close to the site itself. We construct this path by tracing the industrial site’s drainage

25 km downstream and then following rivers both upstream and downstream of that point. Our

sample is then formed by all villages within 20 km of the reference flow line. This radius gives us

plenty of data to work with while focusing analysis on areas most likely to be affected by pollution.

To define the treatment status of villages, we compare their flow lengths with that of the indus-

trial site, again calculated using hydrological modeling. The RD running variable – distance down-

stream of the industrial site – is the difference between these flow lengths. Villages are classified

as downstream if they have a shorter flow length than the industrial site, and upstream otherwise.1

1We considered defining treatment status using elevation as the running variable, classifying villages with lower
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Our approach captures the essential intuition of comparing “upstream” and “downstream” vil-

lages while solving three challenges. One challenge is that forgoing hydrological modeling can

introduce severe measurement error. In settings where standardized hydrological data products are

unavailable, researchers often simply snap the pollution sources to the nearest major river from a

published shapefile (e.g., He et al. (2020)). But this method assumes all pollution impacts occur

along a major river, which can miss the areas of greatest exposure for sources not located near a

major river. It also inaccurately represents where pollution enters the river, resulting in false down-

stream and upstream classifications. Drainage does not flow orthogonally into the nearest river; it

may enter the river somewhere far downstream, or it may not enter the nearest river at all. In our

sample, we found that one industrial site drains to the Bay of Bengal, but its nearest major river in

one shapefile flows in the opposite direction and drains to the Arabian Sea.

A second challenge is that there is no natural way to define an “upstream” set of villages without

reference to a particular river or streamflow line. Upstream villages cannot be defined relative to

a point source itself, since little land area drains directly into any given point outside of a river. To

ensure a sample large enough for analysis, upstream villages must instead be defined relative to a

point on a nearby flow line. This flow line must be close enough to maintain accurate links between

source and exposure, but also major enough to yield a substantial upstream sample. We found that

a flow line defined by a point 25 km downstream of the pollution source results in samples that

satisfy both criteria.

The third challenge is that if downstream and upstream samples are selected in asymmetric

ways, they may not be good counterfactuals for each other. We select downstream villages through

the same process as the upstream villages – i.e., relative to the reference flow line, rather than

the industrial site itself – creating a unified research design that avoids introducing mechanical

discontinuities.
elevation than the industrial site as downstream (Asher et al. 2022). We found that this method produced small and
insignificant RD estimates of the industrial sites on pollution concentrations. This weak “first stage” suggests that
pollution exposure is better captured by flow length than elevation.
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3.2 Regression discontinuity

Our main analyses estimate the causal effects of being immediately downstream of a heavily-

polluting industrial site. We estimate standard RD regressions of the following form:

𝑦𝑖𝑠𝑡 = 𝛽𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚𝑖𝑠 + 𝛾𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑠 + 𝛿𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑠 × 𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚𝑖𝑠 + 𝛼𝑠𝑡 + 𝜀𝑖𝑠𝑡 (1)

in a sample consisting of the stacked upstream and downstream villages 𝑖 corresponding to each
industrial site 𝑠, across all observed years 𝑡.

The coefficient of interest is 𝛽, the local effect of being downstream of an industrial site. The

running variable is downstream distance along the river flow path, defined such that each industrial

site is at zero. Positive values indicate that a village is downstream of the industrial site; negative

values indicate that the village is upstream. We include site-by-year fixed effects 𝛼𝑠𝑡 so that the

treatment effect at the discontinuity is identified only using variation between upstream and down-

stream observations for the same industrial site in the same year. For pollution outcomes, all details

are identical, except that 𝑖 represents a water quality monitoring station instead of a village.
We estimate local linear regressions on each side of the cutoff without higher order polynomials,

following Gelman and Imbens (2014). We report results using a range of bandwidths with a mini-

mum value of 25 km. Smaller bandwidths might fail to include villages fully exposed to pollution,

due to the way we construct our sample. We use a triangular kernel, which is optimal for estimating

local linear regressions at a boundary (Fan and Gijbels 1996). We cluster standard errors by village

to account for correlation across time. Clustering also accounts for repeated observations, when the

same village appears more than once in the stacked sample for different industrial sites. Finally,

we weight village observations by crop area so that our results represent the treatment effects for

the average acre of cropland, which is more easily interpretable than effects for the average village.

The identifying assumption for this RD design is that the upstream patterns in pollution and agri-

cultural outcomes would have continued smoothly downstream if the industrial site did not exist.

Our samples represent continuous swaths of land area, making it a priori unlikely that there would
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be discontinuities in either river pollution or agricultural outcomes. One way the assumption would

be violated is if industrial sites were strategically located downstream of the best agricultural land.

Most of the sites in our sample are part of cities and towns that arose through usual agglomeration

processes, and we can test for discontinuities in land quality. Another way the assumption would

be violated is if there is sorting of agricultural inputs or farmers themselves. Migration and/or dis-

investment in downstream areas is possible, and we can test for it. These resources are unlikely to

shift to the areas immediately upstream, rather than urban areas elsewhere, given India’s rigid land

and labor markets (Hsieh and Klenow 2009; Duranton et al. 2015).

3.3 Limitations of temporal variation

Our research design relies exclusively on cross-sectional variation because the variation we want

to capture is predominantly spatial, not temporal. The timespan of pollution transport is unknown,

and we want to capture the effects of pollution exposure through all possible channels. For exam-

ple, diffusion through groundwater and accumulation in the soil can take years, decades, or more.

Using temporal variation (e.g. with village or monitoring station fixed effects) would rule out these

channels of transport that take longer to operate. Instead, we estimate the long-term cumulative

effects of location relative to highly polluting industrial plants.

Temporal variation is also impractical in this setting because of low statistical power and high

measurement error. The starkest variation in our context is spatial, not temporal – our causal iden-

tification is based on the location of industrial sites, which are extremely persistent and have not

changed for decades. Most of these sites have grown over time, but this growth is correlated across

sites over time as India has industrialized, leaving little useful variation. Available measures of

industrial plant growth are noisy. The Economic Census gives the number of, and employment in,

high-polluting plants in a town or village, but these variables are poor proxies for pollution and are

known to suffer from data quality limitations (Bardhan 2013).
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3.4 Impulse response functions

For some outcomes, we also use spatial impulse response functions to estimate non-local effects un-

der stronger assumptions. The RD design estimates a local average treatment effect (LATE), which

can tell us whether industrial pollution harms agriculture, and how large this harm is immediately

downstream of industrial sites. However, it would be inappropriate to extrapolate RD estimates to

all villages further downstream of industrial sites, because pollution tends to dissipate as the river

flows downstream. Pollutants can break down, deposit on streambeds, or become diluted as a river

collects runoff and joins other tributaries. To estimate the full effects of industrial sites over the

course of a river, we use models of the following form:

𝑦𝑖𝑠𝑡 = 𝛾𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑠 + 𝑓(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑠 × 𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚𝑖𝑠) + 𝛼𝑠𝑡 + 𝜀𝑖𝑠𝑡 (2)

This equation is similar to an event study or distributed lag model, but in river space instead

of time. The first term, 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑠, controls for the linear trend of the outcome upstream of the

industrial site. We then estimate a nonparametric function of distance on the downstream side.

This function tells us the difference between the observed outcomes and the upstream trend, had it

continued downstream.

To estimate this semiparametric model, we use a multistep process. First, we partial out site-by-

year fixed effects 𝛼𝑠𝑡 and obtain residuals. Second, we adjust for the upstream trend by regressing

the residuals on 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑠 for upstream observations only, obtaining fitted values for the down-

stream observations, and subtracting them from observed values. Third, we fit piecewise cubic

splines to these adjusted values. We obtain 95% confidence intervals via cluster bootstrap, resam-

pling districts with replacement and repeating the process for 1,000 iterations.

The assumption required for the spatial response function is considerably stronger than for the

RD design. This design requires that the upstream trend can be extrapolated – that without the

industrial sites, outcomes would have continued to follow the upstream trend downstream for as

far as we estimate the function. This assumption is most likely to hold nearest to the downstream
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cutoff, so the function is less reliable the further downstream we go. Despite these limitations,

this design is the best available method to estimate the effects of industrial clusters away from the

cutoff.

4 Predicting Yields Using Satellite Data

Our RD design requires agricultural outcome data at a high spatial resolution, at the level of fields or

at least villages, across a large geographical area. The Indian government reports yearly agricultural

data only at the administrative unit of districts, which span thousands of square kilometers. Survey

and census microdata is rarely available in India or anywhere else and typically either lacks high-

resolution spatial identifiers or is available for only a limited geographic extent.

Instead, we derive measures of crop yields from satellite data. Remote sensing data is now

widely used in the scientific literature to measure crop yields (Running et al. 2004; Lobell et al.

2022), and it has started to be used in economics as well (Asher and Novosad 2020; Lobell et

al. 2020). Satellite measures are known to predict yields well at small and large spatial scales,

for many different crops, and in both high-income country settings (Hochheim and Barber 1998)

and smallholder settings (Burke and Lobell 2017). In fact, Lobell et al. (2020) show that satellite

measures can outperform farmer reporting and do at least as well as sub-plot crop cuts, as measured

against the gold-standard measure of full-plot crop cuts.

The remote sensing literature has proposed a number of measures to proxy for crop yields.

Rather than choose from among them, we follow Lobell et al. (2020) and put all available measures

into a simple regression model. We then fit this model to the available district-level panel data on

crop yields and generate predicted values for each village and year in our sample.

4.1 Vegetation indices

We use six vegetation indices (VIs). Five are used by Lobell et al. (2020): Normalized Differ-

ence Vegetation Index (NDVI), Green Chlorophyll Vegetation Index (GCVI), MERIS Terrestrial
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Chlorophyll Index, Red-Edge NDVI705 (NDVI705), and Red-Edge NDVI740 (NDVI740). We also

use the Enhanced Vegetation Index (EVI), following Asher and Novosad (2020) and Asher et al.

(2022). NDVI and EVI are the two indices most commonly used in the scientific literature to proxy

for agricultural output.

All VIs aim to capture the amount of photosynthetic activity in plants, which correlates with

yields. Chlorophyll, the pigment that gives leaves their green color, absorbs much of the red light

in the visible spectrum in healthy plants. Other cell structures of the plant reflect most of the

near-infrared light in the invisible part of the electromagnetic spectrum. A healthy plant with high

photosynthetic activity due to high amounts of chlorophyll will reflect less red light and more near-

infrared light. Like cameras, satellite instruments capture the amount of light reflected in these

different bands of the electromagnetic spectrum. Each VI is a function of different bands. NDVI

uses red and near-infrared light; EVI is similar but uses additional information from the blue part of

the electromagnetic spectrum to reduce atmospheric interference and the influence of background

vegetation (Son et al. 2014). The other four VIs are variations on the same idea; each has shown

useful in different settings (Burke and Lobell 2017).

4.2 Data

Satellite data. We extract minimum and maximum values of each VI during agricultural years

2015-17 from the Sentinel-2 MSI satellite2 and aggregate them to village. Sentinel-2 is a satellite

launched by the European Space Agency that records images at each point on Earth’s land surface

approximately once every 10 days, in a spatial resolution of 10 to 60 meters depending on band.

The other major source of publicly available satellite imagery, NASA’s Landsat 7, does not measure

wavelengths in the ranges required to calculate NDVI705 and NDVI740. Maximum values of VIs

are often found to be most strongly predictive of crop yields; minimum values (which likely occur

during the off-season) may help control for background land cover factors (Asher and Novosad
2Accessed using Google Earth Engine, https://developers.google.com/earth-engine/datasets/catalog/

COPERNICUS_S2_HARMONIZED.
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2020). India’s agricultural year spans July 1 of the reference year through June 30 of the following

year. We use years 2015-17 to correspond to the available district-level data.

To perform this calculation, we follow Lobell et al. (2020) as closely as possible. We read in

each Sentinel-2 image taken of India between 1 July 2015 and 30 June 2018 and apply the quality

assurance mask to remove clouds suggested by Google Earth Engine. To reduce noise, we also

apply an agricultural land use mask from the Copernicus Global Land Service (CGLS) to ensure

that only pixels of cropland are included in the sample. At each pixel, we calculate each VI at a

20m resolution for each image, then we find the minimum and maximum values of each VI during

each agricultural year. Finally, we take means of the minimum and maximum values across all

pixels with each village, to match with covariate data and improve computational tractability. For

district-level VIs, we take means of village-level values, weighting villages by agricultural land

area from the population census.

District-level agricultural outcomes. We calculate crop yields weighted by price, which we

refer to as the “revenue value of yield,” from the District Level Database compiled by ICRISAT.3

This data contains information on crop area planted, output and prices for 16 major crops, for 571

districts across 20 states from 1990-2017. Price data covers about 79% of all area under cultivation.

Revenue value of yield is calculated bymultiplying the quantity of each crop by the (time-invariant)

mean price for that crop in that district between 1990-2002. For districts without price data, we

impute the state mean if available or the national mean otherwise.

4.3 Predictive model

We first verify that our calculated VIs are individually predictive of, and positively correlated with,

crop yields. To do so, we regress log revenue value of yield on the log of the difference between

maximum and minimum values of each VI, following Asher and Novosad (2020). This is a district-

level cross-sectional regression; we omit spatial fixed effects since our final research design relies
3http://data.icrisat.org/dld/src/crops.html
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on spatial variation. Results are shown in the first four columns of Table 1. NDVI, EVI, GCVI,

and MTCI are each positively correlated with log revenue and individually explain a substantial

fraction (between 6 and 21 percent) of the variation in log revenue.

Next, we fit our predictive model: We regress log revenue value of yield on all six VIs, with

maximum and minimum values entering separately and linearly, following Lobell et al. (2020).

Results are shown in column (5) of Table 1. Individual coefficients lack an intuitive interpretation,

since each is conditional on all the others. However, the explanatory power of this regression far

exceeds any of the individual VIs, with an R2 of 0.39. For comparison, Lobell et al. (2020) report an

R2 of 0.58 in plot-level data of homogeneous crops in a small geographical region. Considering that

our data is spread across a much larger region with heterogeneous crops, our model performance

appears good.

Finally, we obtain village-level predicted yields by fitting this estimated model to our village-

level VI data, for all years of our sample. One limitation of this approach is that we cannot measure

the performance of our district-level model in village-level data, since no systematic village-level

data on agricultural outcomes is available. In addition, the relationship between reflectance and

yields varies by crop, so our model would surely be improved by controlling for crop shares. Crop

identification maps exist for the United States (i.e., the USDA’s Cropland Data Layer) and are under

development for India, but none are publicly available yet. Census data on village amenities lists

the major crops in each village, but data quality is too low to be useful.

5 Other Data and Summary Statistics

5.1 Data Sources

5.1.1 Industrial sites

India’s Central Pollution Control Board (CPCB) selected 88 industrial sites for detailed, long-term

study in 2009. Names of these sites were taken from the CPCB document “Comprehensive Envi-
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ronmental Assessment of Industrial Clusters” (Central Pollution Control Board 2009). We identi-

fied the geolocation of each site using Google Maps and other publicly available reference infor-

mation. These sites are displayed as orange dots in Figure 2.

The CPCB document also contains numerical scores for air, water, and land pollution, and an

overall score, each out of 100. Land pollution refers to toxic waste, which can also contaminate

groundwater. Details of the scoring methodology are provided in a companion document (Central

Pollution Control Board 2009). The CPCB considers a site “severely polluted” if the score for a

single pollution type exceeds 50, or if the overall score exceeds 60 (the overall score is a nonlinear

combination of the component scores). Our sample consists of 48 such sites that had a “severe”

rating in land or water pollution in 2009 and for which our sample selection procedure yielded at

least one upstream and downstream village per site.

5.1.2 Pollution measurements

We use data of water pollution measurements along rivers in India collected by the CPCB. The

initial dataset, collected and published by Greenstone and Hanna (2014), includes monthly obser-

vations from 459monitoring stations along 145 rivers between the years 1986 and 2005. We extend

this data by downloading yearly pollution readings for the same stations from 2006-2012 from the

CPCB website. We construct yearly averages for the pre-2005 data and append these to the newly

downloaded data.

This raw dataset includes a noisy location measure as well as river name and a description

of the sampling location. We verified, refined, or corrected the geolocation of each station by

manually cross-referencing these contextual variables with Google Maps, CPCB documents, and

other publicly available reference information. The locations of these stations are displayed as

green dots in Figure 2.

Many water quality parameters have been collected by the CPCB at some point. However,

only a few parameters are measured consistently. We focus on three common omnibus measures

that proxy for a wide range of pollutants: chemical oxygen demand (COD), biochemical oxygen
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demand (BOD), and dissolved oxygen saturation (DO). COD is a standardized laboratory test that

serves as an omnibus measure of organic compounds, which industrial plants typically generate in

high quantities. BOD is a related but narrower test. COD and BOD are the Indian government’s

top priority in regulating industrial wastewater (Duflo et al. 2013), while DO is widely used in re-

search (Keiser and Shapiro 2019a). We also show results for a number of less consistently reported

measures.

5.1.3 Village covariates and boundaries

For baseline village covariates, we use the Population Census of 2001, which includes more than

200 variables on population, employment, amenities, and infrastructure. We obtain cleaned Cen-

sus data along with geospatial data on village boundaries from NASA’s Socioeconomic Data and

Applications Center.4 Because villages and towns sometimes split or merge, we use consistent

definitions from the Socioeconomic High-resolution Rural-Urban Geographic Platform for India

(SHRUG) provided by the Development Data Lab.5 The SHRUG provides an identifier called a

“shrid” for a group of contiguous villages or towns that can be combined into unchanged spatial en-

tities over several decades. Almost 96% of villages from the 2001 population match a single shrid

and do not require spatial aggregation. For the rest, we dissolve polygons boundaries to obtain

shrid boundaries, and aggregate administrative data over the villages within each shrid.

5.2 Hydrological modeling

We use the following procedure to match villages and pollution monitoring stations to industrial

sites and assign river distances and treatment status.

Flow length raster. We obtain a digital elevation model (DEM) at 15 arc-second resolution for

the South Asia area from the HydroSHEDS project of the United States Geological Survey. From
4 Available at https://sedac.ciesin.columbia.edu/data/set/india-india-village-level-geospatial-socio-econ-1991-

2001
5 Available at https://www.devdatalab.org/shrug_download/
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this DEM, we use the Spatial Analyst tools in ArcGIS Pro to fill sinks, create a flow direction raster

(using the D8 method), and derive a flow length raster. This raster gives the distance along rivers

that a particle released at each cell must travel to reach the ocean (or the edge of the raster).

Sample selection. To define the sample of villages for each industrial site, we first create a refer-

ence flow line. We use the Trace Downstream tool in ArcGIS Pro to find the site’s flow path, i.e.,

the route that effluent released at the site must follow to reach the ocean. We then find the point

on this flow path that is 25 km downstream of the site (the upper yellow dot in Figure 3). Next,

we use the Watershed tool in ArcGIS Pro to find the area that drains into that point. We find the

flow lengths of all villages within this watershed by intersecting the watershed polygon with village

centroids and matching village centroids to the flow length raster. We identify the longest possi-

ble flow path within this watershed by choosing the village at the 95th percentile of flow length

within this set (the lower yellow dot). We use the 95th percentile instead of the maximum to avoid

erroneous values that sometimes arise at the edges of watershed polygons. Finally, to define the

sample, we find the flow path of the chosen “headwater” village, generate a 20-km buffer around

each flow path, and intersect this buffer with village centroids.

Village distance and treatment status. To calculate distances for the RD design, we project

village centroids and monitoring stations into one-dimensional river space, snapping them to the

nearest point along the reference flow line. We then find the flow length (i.e., to the ocean) of each

snapped point by matching it to the flow length raster. We construct distance, the running variable,

as the difference in flow lengths between each village or monitoring station and its corresponding

industrial site. We also construct a downstream indicator variable equaling one if the distance

variable is positive, meaning that the village or station is downstream of the industrial site. We also

calculate the perpendicular distance from the original village centroid to the flow line, as a control

and for heterogeneity analysis.
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5.3 Continuity tests and summary statistics

We provide summary statistics in Table 2 for our main outcome variables on pollution and agricul-

tural output, and in the first column of Appendix Table 6 for covariates.

To assess the credibility of our research design, we test a range of covariates for continuity at

the threshold of being downstream of the industrial site. If the identification assumption is true, we

should not see discontinuous jumps in the values of other village characteristics that are fixed or

unlikely to be affected by pollution. We test for continuity by running RD regressions in the form

of Equation 1 with each covariate on the left-hand side. For the RD design, covariate means do not

need to be equal upstream and downstream; they only need to vary continuously as the river passes

the industrial site.

We group covariates into several categories: (1) physical characteristics, (2) potential yields

estimated for common crops, (3) commercial and public amenities, and (4) demographic charac-

teristics. Physical characteristics and potential yields are time-invariant and cannot be affected by

water pollution, so they are the “purest” tests. In contrast, amenities and demographics could po-

tentially respond to water pollution if the economic impacts are large enough. For these variables,

a discontinuity could represent a genuine outcome rather than evidence of pre-existing difference.

Still, we include them because they are important characteristics of villages and we expect any

endogenous response to be small compared with overall patterns.

Figure 4 shows visual evidence of continuity for a selection of these covariates. For context,

we first plot a histogram of village observations. The usual density test of McCrary (2008) is

unnecessary since our sample is based on land area, which by definition has a continuous density

in space; villages cannot manipulate their locations relative to the cutoff. Other plots in Figure 4

suggest that elevation, potential yields (standardized and averaged across crops), distance to nearest

canal, village population, and share of population in scheduled castes and scheduled tribes are all

roughly continuous.

Standard errors and RD point estimates for these covariates and many others are shown in

Appendix Table 6 using a range of bandwidths. Across the 31 variables and 3 bandwidthswe test, 12
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estimates are statistically significant at a 10% level, in line with expectations. Taken together, there

is little evidence to suggest that agricultural outcomes would be different immediately downstream

of the industrial sites if they did not exist. It also does not appear that commercial and public

amenities or demographic characteristics of villages are affected by being downstream of these

industrial sites. In robustness checks, we control for all these covariates.

6 Results

6.1 Pollution

We first show that the industrial sites considered “severely polluted” by the Central Pollution Con-

trol Board do in fact increase pollution levels discontinuously in nearby rivers.

Figure 5 visualizes our main results for pollution. The left side shows regression discontinuity

plots for three water quality parameters that are both widely reported and associated with indus-

trial pollution: chemical oxygen demand (COD), biological oxygen demand (BOD), and dissolved

oxygen (DO). The graphs plot mean values of each parameter within quantile bins of distance from

the industrial site; each dot represents approximately 260 observations. Positive distance values

indicate that the monitoring station is downstream of the industrial site, and negative values are

upstream stations. Before binning, values are log-transformed and adjusted for site-by-year fixed

effects. We also fit cubic splines to show overall patterns.

All three parameters show a discontinuous increase in pollution at the exact location of the

industrial sites. COD and BOD increase; these parameters are undesirable, with higher levels in-

dicating worse water quality. The decrease in DO also indicates an increase in pollution; this

parameter is desirable, with lower levels indicating worse water quality.

Graphs on the right side of Figure 5 show that water pollution dissipates as the river flows

downstream. These graphs plot spatial impulse response functions for each parameter, showing

how industrial clusters affect river pollution over the course of the river. For all three parameters,

the increase in pollution is greatest immediately after the industrial site. It then steadily falls and
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rejoins the trend implied by the upstream curve no more than 100 km from the industrial site.

Table 3 quantifies these results. It reports RD estimates from Equation 1 estimated separately

for each parameter, for bandwidths of 25, 50, and 100 km. Dependent variables are listed in rows;

each cell shows the estimated coefficient on the Downstream indicator variable, controlling for

distance on each side of the industrial site along with site-by-year fixed effects.

The estimates are quantitatively large. For example, the estimate of 80.6 for COD (with a 50-

km bandwidth) implies that the average “severely polluted” industrial site nearly doubles pollution

levels in nearby rivers. Confidence intervals exclude zero at a 95% level for all three parameters

at bandwidths of 50 and 100 km. Estimates using a bandwidth of 25 km are less precise but have

very similar point estimates; standard errors shrink as bandwidths increase and more data enters

the sample.

Appendix Table 7 reports RD results for 16 additional water pollutants available in CPCB data.

These pollutants are measured less frequently, so many of the estimates are imprecise. However,

the evidence suggests that nearly every reported pollutant doubles or triples in concentration (or

increases by around 1 standard deviation) immediately downstream of industrial sites. This is

true for measures of salinity (electrical conductivity and presence of ions like calcium, chloride,

magnesium, and sodium), nutrients (nitrates, nitrites, potassium, and sulphates), acidity (pH), and

other omnibus measures (total solids and turbidity).

No data is available to directly measure heavy metals or toxic organic chemicals, which are

likely the most concerning pollutants for crop growth. However, our research design is based

around the industrial sites that are likely some of the greatest sources of these water pollutants

in India if not the world, so it is reasonable to expect heavy metals and organic compounds to

rise in tandem with other parameters at these locations. Most importantly, the fact that essentially

every observed pollutant increases dramatically at the precise locations of these industrial sites

represents a strong “first stage” that gives us confidence that our research design is indeed capturing

the pollution exposure we want it to.
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6.2 Agricultural outcomes

Having shown that industrial sites increase pollution, we investigate how this pollution affects

agricultural production in downstream villages, using our measure of crop yields derived from

satellite data.

Figure 6 visualizes our main result for crop yields. It shows an RD plot similar to those for

pollution, but using the predicted log revenue value of yield, by village and year. The plot does not

show a discontinuity at the industrial site. Despite increasing water pollution drastically, industrial

sites do not seem to affect downstream crop yields.

Table 4 quantifies this result. As before, Panel A reports RD estimates for predicted crop yield

for multiple bandwidths (in columns). The point estimate using a 50-km bandwidth is 0.009, im-
plying that crop yields are 0.9 percent higher immediately downstream of a severely-polluting

industrial site. This apparent increase is not statistically different from zero. The 95% confidence

interval allows us to reject reductions in crop yields larger than 0.7 percent. Other bandwidths yield

results that are less precise but still small in magnitude.

Panels B-D of Table 4 report results from variations on the main specification. Panel B controls

for the distance from village to river flow line. Panel C controls for the full set of pre-treatment

variables tested in Appendix Table 6. Panel D controls for irrigation-related agricultural input

variables listed in Table 5. All these specifications produce similar results as the main specification.

None of the estimates are statistically different from zero, and the point estimate with the largest

magnitude is −0.024, a 2.4 percent reduction.

6.3 Heterogeneity

Might our research design still examine too broad of an area? To zero in on the precise areas likely

to have the greatest pollution exposure, we conduct heterogeneity analyses along three dimensions.

First, 8 examines heterogeneity by distance to river (i.e., flow line). Villages closer to the affected

river are more likely to be directly affected by pollution, either through groundwater or through

river irrigation. Next, 8 examines heterogeneity by total employment in highly polluting industries
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within the industrial site, as calculated from the Economic Census. Even among the severely pol-

luting sites in our sample, those with greater concentration of employment in the most-polluting

industries may generate more pollution. Finally, 10 examines heterogeneity by irrigation source

(i.e., whether the village has any cropland irrigated by canals, wells, or rivers). Which irrigation

sources deliver the most water pollution is unknown, but some may deliver more than others.

Across all subgroups, there are no detectable effects of industrial sites on crop yields. All mag-

nitudes are small, and all but one are statistically insignificant. There are not even any suggestive

patterns across point estimates.

6.4 Agricultural inputs

We next look at whether farmers adjust irrigation and other agricultural inputs in response to indus-

trial water pollution. Effects on agricultural inputs can provide a fuller description of the potential

costs of pollution. Even though crop yields are not harmed much, that may be a net result of costly

adaptation choices, as farmers reallocate factors of production toward or within agriculture in order

to maintain crop yields.

Table 5, Panel B reports RD estimates for a set of agricultural inputs. Labor, as measured by the

share of employment in agriculture, does not change much immediately downstream of heavily-

polluting industrial sites (for one bandwidth the point estimate is statistically significant but still

small). Neither does land, as measured by crop area under cultivation (per capita).

However, irrigation inputs do appear to respond to industrial water pollution, at least for some

bandwidths. The share of crop area under irrigation increases up to 3 percentage points, the number

of villages that irrigate from rivers and canals fall by up to 7 and 11 percentage points, and the

number of villages that irrigate from wells increases by up to 4 percentage points. This evidence is

more mixed because the estimates are not consistent across bandwidths. But overall, it appears that

farmers may respond to industrial water pollution by (a) switching irrigation sources away from

surface water and toward groundwater, and (b) expanding irrigation overall.

If this is true, it suggests two things: First, surface water is the more likely channel of exposure
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through which pollution reaches farms. Second, the null effect on crop yields is masking larger

welfare costs of pollution: Perhaps the only reason crop yields are unharmed by industrial water

pollution in equilibrium as a result of costly input substitution, as farmers drill more wells and use

more energy to pump groundwater.

7 Discussion

7.1 Contextualizing the results

Our results suggest that crop yields are not detectably harmed by industrial water pollution. It is

still possible that certain villages near certain industrial sites experience damages. But on average,

our most precise estimates can reject declines in crop yields of more than 0.7 percent.

How does this magnitude compare with other kinds of impacts to crop yields? Estimates are

larger for many other shocks and interventions. Yields fall 4 percent in response to a one standard

deviation increase in average temperature (Colmer 2021), 2 to 8 percent in response to heat waves

(Heinicke et al. 2022), 3 to 10 percent in response to a 20-day delay in monsoon arrival (Amale

et al. n.d.), and 20 to 36 percent in response to air pollution (Burney and Ramanathan 2014).

Productivity gains from crop germplasm improvement in the Green Revolution are estimated at

0.5 to 1.0 percent per year over multiple decades (Pingali 2012).

In addition, our estimates likely represent an upper bound on the overall impacts of industrial

water pollution on crops, for two reasons. First, our study focuses on the most highly polluting

industrial sites in India, so the effects of other pollution sources should be smaller. Second, our RD

regressions estimate a local treatment effect immediately downstream of heavily-polluting indus-

trial sites. Since pollution dissipates further away from the sites, the effects further downstream

will be smaller.

Even if we take the lower end of the least-precise confidence interval in Table 4, the largest

pollution effect that could possibly be consistent with our estimates is a 9 percent fall in crop yields.

Damages of this magnitude would indeed be harmful for farmers in the affected area. But this upper
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bound would apply only to a very small region. Assuming crop yield impacts approximately scale

with pollution concentrations, crops more than 50 to 100 km downstream of the clusters would be

essentially unaffected.

7.2 Explaining the results

It may be puzzling – and at odds with the agronomy literature – that near some of the largest point

sources of industrial water pollution in the world, crops seem not to be harmed. We propose and

discuss six hypotheses to explain our results.

Hypothesis 1: Farmers adjust agricultural inputs to avert pollution damage. This is the

explanation for which we find mixed evidence. In some specifications, farmers downstream of

industrial sites appear to irrigate more of their crops and shift from surface water to groundwa-

ter sources. Like households that adopt air conditioning to avoid damage from heat, farmers may

substitute inputs to avoid pollution damages they would otherwise suffer. In this case, the wel-

fare cost of pollution would be found not in the dose-response effects but rather in these averting

expenditures.

Hypothesis 2: These specific yield impacts are not well suited to detection by remote sens-

ing. Many papers in the economics and scientific literatures have found satellite-derived measures

to be useful proxies for crop yields and agricultural output, including for answering causal ques-

tions. For example, Asher et al. (2022) find a positive effect of canal construction on EVI in

India. However, many questions and uncertainties remain about their capabilities. One possibility

is that vegetation indices are simply not well-suited to pick up the specific effects of industrial wa-

ter pollution on crops. This seems unlikely, since many of the agronomy studies on water pollution

specifically report negative impacts to leaf size and color, characteristics that vegetation indices

are well-tailored to measure. Another possibility is that farmers adjust crop choice in response to

pollution exposure. Vegetation indices are affected by vegetation type in addition to crop health,

so if farmers switch to new crops with greater baseline biomass or leaf canopy, it could offset the

direct harms from pollution. Controlling for crop type could rule out this concern, but no crop

26



classification datasets are yet publicly available.

Appendix Table 11 shows the results of our main analysis applied to the best available data that

directly observes crop yields, the ICRISAT district-level data. As expected, estimates are too noisy

and imprecise to be useful.

Hypothesis 3: Pollution harms output quality rather than quantity. It is possible that indus-

trial water pollution does harm crops, but only in ways that affect crop quality rather than quantity.

For example, a crop such as rice might absorb heavy metals, bringing adverse health effects to

consumers but leaving yield unaffected. The welfare consequences of quality effects are harder to

measure. Obvious quality effects such as discoloration may capitalize into prices, but other quality

effects may not. Studying effects of pollution on crop revenues rather than yields would address

this issue; we again attempt to do this in Appendix Table 11 but find results to be highly imprecise.

Hypothesis 4: Industrial water pollution has beneficial components that balance the

harms. Industrial effluent often includes salinity, heavy metals, and other components that are

known to harm crops. However, they can also include nitrates, phosphates, and potassium, which

can benefit plants as nutrients. It is possible that the net effects of industrial effluent are near zero,

even if individual components have positive and negative effects.

Hypothesis 5: Farm-level doses are lower than observed pollution levels. Perhaps the high

levels of industrial pollution measured in rivers are not as large at the point when actually applied

to crops. The most direct channels of pollution transport are rivers and canals, but these surface

water sources irrigate a relatively small share of land. Most irrigation water in India is pumped

from wells, and the transport and fate of pollutants in groundwater is complex. Perhaps industrial

effluent filters through enough layers of soil and rock that pollutants are removed, remediated, or

diluted before being taken up by crops.

Hypothesis 6: Case studies exhibit publication bias. Although a number of studies in agron-

omy have shown significant impacts of industrial water pollution on crops, it is possible that the

studies available in the published literature are unrepresentative of the true overall effects of pollu-

tion. This could happen in two ways. One is site selection: Perhaps the cases researchers choose to
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study are extreme outliers in pollution concentrations, directness of crop exposure, or vulnerability

of specific crops to specific pollutants, and impacts to crops more generally are smaller. The other

way is file drawer bias: Even if true pollution effects are small, sampling variation will produce

larger results for some studies, and other studies are abandoned without publication.

8 Conclusion

This paper studies the effects of industrial water pollution on agriculture. We examine 48 industrial

sites in India identified by the government as “severely polluting” and estimate the costs of their

pollution to downstream agriculture. Our regression discontinuity research design exploits the

unidirectional flow of water pollution along with the location of these severely polluted industrial

sites. To overcome the limitations placed by spatially aggregated administrative data on agricultural

output, we build predictive models of crop yields from vegetation indices in satellite data. Such

models have been shown to perform well in predicting yields both in the scientific and economics

literature, and we verify that they predict agricultural yields within our sample too. We also use

hydrological modeling to model areas of pollution exposure and choose counterfactuals.

We describe three sets of results. First, the location of these industrial sites coincides with a

large, discontinuous jump in water pollution in nearby rivers. Second, crop yields are no lower in

villages immediately downstream of these sites than comparable villages immediately upstream of

the same sites, in the same year. Third, we find some evidence that farmers adjust irrigation inputs

to avoid pollution damages: in some specifications, downstream villages irrigate more overall, are

less likely to use surface water irrigation, and are more likely to use groundwater irrigation.

We propose six hypotheses to explain findings. Besides adjusting inputs, it is possible that the

specific types of yield impacts caused by industrial water pollution are not well-suited to detection

via remote sensing, that pollution harms output quality rather than quantity, that industrial pollution

has beneficial components for agriculture that balance the harms, that farm-level pollution levels are

lower than river observations, or that the case studies in the agronomic literature exhibit publication
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bias. Due to data limitations, we leave the resolution of these explanations to future research.
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10 Figures

Figure 1: Satellite photo showing a discontinuity in river color at the outlet of the Nazafgarh Drain
Basin on the Yamuna River, just north of New Delhi. (Source: Sentinel 2, taken on October 2,
2017.) ↩
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Figure 2: Locations of “severely polluted” industrial sites (orange dots) and water pollution mea-
surement stations (green dots).↩
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Figure 3: Illustration of the sample selection and treatment assignment for ourmain research design.
↩
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Figure 4: Continuity tests of a selection of covariates. The 𝑥-axis is distance along a river relative to
a heavily-polluting industrial site. Areas with positive distance are downstream of the site; negative
distance is upstream. Dots are binned scatterplots, showing means of each variable within quantiles
of the running variable, after partialing out site fixed effects. Lines are cubic splines fitted separately
on each side of the graph. Graphs illustrate relationships visually; statistical inference is left for
the regressions. ↩
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Figure 5: Regression discontinuity plots for pollution measurements. Graphs on the left plot mean
values of each parameter within quantile bins of distance from a heavily-polluting industrial site;
each dot represents approximately 260 observations. Positive distance values indicate that the mon-
itoring station is downstream of the industrial site; negative values are upstream stations. Values are
log-transformed and adjusted for site-by-year fixed effects before binning. Fitted cubic splines il-
lustrate overall patterns. Graphs on the right plot estimated impulse response functions (with 95%
confidence intervals), showing how pollution concentrations decay downstream of an industrial
site. These functions are cubic splines estimated relative to the upstream linear trend. ↩
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Figure 6: Regression discontinuity plots for predicted agricultural yield. Procedure to calculate
predicted yield is described in section 4 and Table 1. The 𝑥-axis is distance along a river relative to
a heavily-polluting industrial site. Areas with positive distance are downstream of the site; negative
distance is upstream. Dots are binned scatterplots, showing means of each variable within quantiles
of the running variable, after partialing out site fixed effects. Lines are cubic splines fitted separately
on each side of the graph. Graphs illustrate relationships visually; statistical inference is left for
the regressions. ↩

41



11 Tables

Table 1: Correlation of Satellite-based Proxies with District Agricultural Output

Dependent Variable: log(Revenue Value of Yield)

Explanatory Variables (1) (2) (3) (4) (5)

Intercept 10.0 9.42 9.36 8.20 8.48
(0.030) (0.024) (0.030) (0.161) (0.096)

log(Max VI - Min VI) 0.661 0.058 0.443 0.102
(0.044) (0.005) (0.045) (0.012)

Max NDVI -4.89
(0.639)

Min NDVI 0.575
(1.57)

Max EVI 1.45×10−7

(1.09×10−8)
Min EVI -8.16×10−5

(0.0001)
Max NDVI705 10.1

(0.851)
Min NDVI705 1.60

(1.35)
Max NDVI740 -4.68

(1.34)
Min NDVI740 0.704

(1.33)
Max GCVI 0.001

(0.001)
Min GCVI 0.027

(0.437)
Max MTCI -1.09×10−7

(6.79×10−8)
Min MTCI -1.22×10−7

(7×10−8)
Vegetation Index (VI) NDVI EVI GCVI MTCI

Observations 1,371 1,371 1,371 1,371 1,371
R2 0.205 0.076 0.187 0.064 0.390

Notes: Predictive modesl of observed crop yields (in district-level aggregate data) with re-
spect to satellite-based measures of agricultural production. Coefficients are estimated from
regressions of log crop revenue per hectare on remote sensing measures without any fixed
effects. Vegetation indices are calculated at pixel-level in Google Earth Engine (GEE) using
a cropland mask. Columns 1-4 include the district mean of the log of each pixel’s difference
between maximum and minimum VI values within a year. Column 5 includes the district
mean of the maximum and minimum values for all VIs together. Standard errors (in paren-
theses) are clustered by district. ↩
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Table 2: Summary Statistics

Variable Mean SD N

Panel A: Pollution
Dissolved Oxygen (mg 𝑂2/l) 6.39 1.97 2299
Chemical Oxygen Demand (mg 𝑂2/l) 43.39 78.40 1979
Biological Oxygen Demand (mg 𝑂2/l) 10.06 20.42 2342

Panel B: Agricultural Output
Predicted log yield (Rs/ha) 1.20 1.34 100020

Panel C: Agricultural Inputs
Crop Area under Cultivation per capita (ha) 12.58 82.38 59568
Share of Employment in Ag 0.70 0.22 59800
Share of Crop area under Irrigation 0.51 0.39 59800
Any Irrigation from Rivers (=1) 0.08 0.27 59800
Any Irrigation from Canals (=1) 0.30 0.46 59800
Any Irrigation from Wells (=1) 0.75 0.43 59800

Notes: Summary statistics for the full sample of villages that are either upstream
or downstream of severely-polluting industrial sites. Pollution data come from
laboratory tests of samples taken at water quality monitoring stations maintained
by the Central Pollution Control Board. Predicted yield is calculated using the es-
timated model in column 5 of Table 1 applied to village-level vegetation indices
calculated from Google Earth Engine. Agricultural inputs come from the Popula-
tion Census of 2001. ↩
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Table 3: RD Estimates for Pollution

RD Bandwidth

Dependent Variable Mean [SD] [25 km] [50 km] [100 km]

Biological Oxygen Demand 10.064 23.2 21.3 19.2
[20.417] (13.9) (9.8) (6.1)

Observations 965 1,549 2,342
R2 0.71 0.62 0.50

Chemical Oxygen Demand 43.388 79.6 80.6 67.9
[78.399] (44.0) (32.0) (20.2)

Observations 811 1,302 1,979
R2 0.74 0.71 0.62

Dissolved Oxygen 6.388 -1.1 -1.8 -2.0
[1.965] (0.80) (0.57) (0.44)

Observations 932 1,507 2,299
R2 0.84 0.75 0.67

Distance X X X
Distance X Downstream X X X
Industry X Year FE X X X

Notes: Estimated effects of severely-polluting industrial sites on water pollution con-
centrations in nearby rivers, immediately downstream of the sites. Dependent variables
are listed in rows. Column 2 of the table presents the mean and standard deviation (in
brackets) of the dependent variable for the 100 km bandwidth. Each cell in columns 3-5
reports the estimated coefficient on the Downstream indicator variable, controlling lin-
early for distance on each side of the industrial site along with site-by-year fixed effects.
Observations are limited to monitoring stations within the specified bandwidth of the
industrial site and are weighted using a triangular kernel. Standard errors clustered by
village are provided in parenthesis in columns 3-5. ↩
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Table 4: RD Estimates for Predicted Yield

Dependent variable: Predicted Log Revenue Value of Yield

RD Bandwidth

[25 km] [50 km] [100 km]

Panel A: Main RD Estimate
Downstream effect -0.007 0.009 -0.005

(0.010) (0.008) (0.025)
Observations 25,292 51,929 100,020

Panel B: Robustness to controling for distance to river
Downstream effect -0.007 0.009 -0.006

(0.010) (0.008) (0.025)
Observations 25,292 51,929 100,020

Panel C: Robustness to controling for pre-treatment variables
Downstream effect -0.017 -0.005 -0.024

(0.010) (0.007) (0.035)
Observations 25,289 51,926 100,014

Panel D: Robustness to controling for irrigation dummies
Downstream effect -0.007 0.010 -0.004

(0.010) (0.008) (0.024)
Observations 25,292 51,929 100,020

Distance X X X
Distance X Downstream X X X
Industry X Year FE X X X

Notes: Estimated effects of severely-polluting industrial sites on pre-
dicted yield in villages immediately downstream of the sites. Each cell
reports the estimated coefficient on the Downstream indicator variable,
controlling linearly for distance on each side of the industrial site along
with site-by-year fixed effects. Sample includes villages within 20 km
of a flow path that passes near each industrial site, as defined in the text.
Panel A presents the main RD estimates while the other panels present
robustness results. Observations are limited to villages within the spec-
ified bandwidth of the industrial site and are weighted by village crop
area multiplied by a triangular kernel. Standard errors (in parentheses)
are clustered by village. ↩
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Table 5: RD Estimates for Agricultural Inputs

RD Bandwidth

Dependent Variable Mean [SD] [25 km] [50 km] [100 km]

Share of Employment in Ag 0.725 0.006 -0.017 -0.012
[0.211] (0.011) (0.008) (0.010)

Crop Area under Cultivation per capita 48.562 0.214 -0.304 6.11
[170.754] (0.431) (0.247) (14.8)

Share of Crop area under Irrigation 0.546 0.034 0.028 0.0008
[0.4] (0.011) (0.008) (0.020)

Any Irrigation from Rivers 0.067 -0.069 0.002 0.030
[0.25] (0.019) (0.015) (0.022)

Any Irrigation from Canals 0.348 -0.105 -0.034 0.025
[0.476] (0.025) (0.019) (0.025)

Any Irrigation from Wells 0.756 0.021 0.021 0.041
[0.429] (0.018) (0.013) (0.011)

Observations 12,121 24,641 47,932

Distance X X X
Distance X Downstream X X X
Industry FE X X X

Notes: Estimated effects of severely-polluting industrial sites on agricultural inputs in villages im-
mediately downstream of the sites. Dependent variables are listed in rows. Column 2 of the table
presents the mean and standard deviation (in brackets) of the dependent variable for the 100 km
bandwidth. Each cell in columns 3-5 reports the estimated coefficient on the Downstream indicator
variable, controlling linearly for distance on each side of the industrial site along with site-by-year
fixed effects. Sample includes villages within 20 km of a flow path that passes near each industrial
site, as defined in the text. Observations are limited to villages within the specified bandwidth of
the industrial site and are weighted by village crop area multiplied by a triangular kernel. Standard
errors (in parentheses) are clustered by village. ↩
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12 Appendix Tables

Table 6: RD Estimates for Continuity of Covariates

RD Bandwidth

Dependent Variable Mean [SD] [25 km] [50 km] [100 km]

Panel A: Physical Characteristics
Distance from canal (km) 8.523 -0.333 0.122 -0.725

[11.439] (1.10) (1.07) (0.976)

Distance from nearest town (km) 80.99 -3.10 -3.18 -0.753
[735.755] (1.02) (0.913) (1.10)

Elevation (m) 264.456 -4.11 -7.53 -9.74
[170.14] (3.72) (3.00) (5.49)

Panel B: GAEZ potential yield - High Input Scenario (kg/ha)
Chickpea 0.594 -0.018 -0.022 0.0004

[0.513] (0.027) (0.022) (0.027)

Cotton 0.771 0.003 0.006 0.005
[0.165] (0.014) (0.013) (0.010)

Dryland rice 1.17 0.051 0.054 0.051
[1.218] (0.023) (0.027) (0.033)

Gram 1.474 0.012 0.017 0.013
[0.412] (0.031) (0.027) (0.026)

Groundnut 1.393 0.021 0.016 0.015
[0.502] (0.029) (0.026) (0.024)

Maize 6.735 0.046 0.085 0.104
[1.939] (0.135) (0.116) (0.116)

Pearl millet 1.361 0.035 0.045 0.061
[1.29] (0.028) (0.030) (0.040)

Pigeon pea 1.917 0.026 0.025 0.024
[0.639] (0.040) (0.036) (0.034)

Rapeseed 0.858 0.013 0.010 0.025
[0.645] (0.021) (0.018) (0.017)

Sorghum 5.931 0.007 0.057 0.104
[1.251] (0.113) (0.099) (0.091)

Soybean 2.127 0.042 0.038 0.026
[0.767] (0.049) (0.044) (0.041)

continued
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Table 6: RD Estimates for Continuity of Covariates (Continued)

Sugarcane 1.166 0.045 0.087 0.113
[1.679] (0.027) (0.035) (0.062)

Sunflower 1.035 0.002 -0.067 -0.091
[0.752] (0.029) (0.047) (0.060)

Wetland rice 1.717 0.031 0.013 0.043
[1.061] (0.042) (0.042) (0.056)

Wheat 1.307 0.018 0.011 0.034
[1.131] (0.036) (0.027) (0.029)

Normalized All Crops -0.281 0.024 0.023 0.031
[0.777] (0.049) (0.044) (0.038)

Panel C: Amenities: Facility Available in Village? (1 = yes, 0 = no)
Banking 0.152 -0.033 -0.024 -0.011

[0.359] (0.020) (0.019) (0.016)

Communication 0.566 0.013 -0.010 0.006
[0.496] (0.030) (0.025) (0.019)

Medical 0.539 -0.023 -0.026 -0.003
[0.499] (0.031) (0.027) (0.026)

Postal 0.682 0.008 0.016 0.044
[0.466] (0.026) (0.021) (0.018)

Paper and magazines 0.655 -0.073 -0.027 0.014
[0.476] (0.045) (0.029) (0.024)

Educational 0.917 -0.006 -0.004 0.007
[0.276] (0.010) (0.008) (0.010)

Drinking water 0.998 -0.002 -0.002 -0.001
[0.043] (0.003) (0.004) (0.003)

Panel D: Social and Demographic Characteristics
Household size 5.764 0.073 0.045 0.022

[0.873] (0.045) (0.037) (0.048)

Literacy Rate (percent) 0.504 -0.004 -0.0005 -0.0005
[0.14] (0.011) (0.008) (0.009)

Log Village Area 6.281 -0.112 -0.067 -0.009
[1.056] (0.055) (0.054) (0.050)

Log Population 7.389 -0.109 -0.084 -0.029
[1.082] (0.059) (0.062) (0.057)

Share of Scheduled Caste/Tribe Population 0.307 -0.022 -0.007 -0.008

continued
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Table 6: RD Estimates for Continuity of Covariates (Continued)

[0.245] (0.023) (0.018) (0.015)

Observations 12,103 24,421 47,624

Distance X X X
Distance X Downstream X X X
Industry FE X X X

Notes: Tests of continuity in river space at severely-polluting industrial sites, for
covariates that are either fixed in time or unlikely to be affected by the presence of
industrial pollution. Dependent variables are listed in rows. Column 2 of the table
presents the mean and standard deviation (in brackets) of the dependent variable for
the 100 km bandwidth. Each cell in columns 3-5 reports the estimated coefficient
on the Downstream indicator variable, controlling linearly for distance on each side
of the industrial site along with site-by-year fixed effects. Sample includes villages
within 20 kmof a flow path that passes near each industrial site, as defined in the text.
Observations are limited to villages within the specified bandwidth of the industrial
site and are weighted by village crop area multiplied by a triangular kernel. Standard
errors (in parentheses) are clustered by village. ↩
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Table 7: RD Estimates for other measures of Pollution

RD Bandwidth

Dependent Variable Mean [SD] [25 km] [50 km] [100 km]

Calcium (mg/L) 88.556 96.3 114.1 86.2
[103.896] (96.4) (61.1) (37.1)

Observations 771 1,208 1,818

Chloride (mg/L) 151.152 88.0 424.3 337.8
[441.251] (378.3) (338.3) (235.2)

Observations 799 1,260 1,887

Hardness (mg/L) 180.486 191.7 249.0 183.6
[203.994] (204.2) (136.3) (85.7)

Observations 801 1,260 1,892

Magnesium (mg/L) 52.481 40.8 50.4 36.9
[58.206] (38.3) (26.5) (17.6)

Observations 760 1,190 1,790

Nitrate (mg/L) 0.982 0.323 0.417 0.414
[1.121] (0.297) (0.192) (0.140)

Observations 228 383 582

Nitrite (mg/L) 0.489 0.047 0.157 0.195
[0.958] (0.073) (0.141) (0.120)

Observations 211 361 555

pH 7.687 -0.223 -0.465 -0.401
[0.534] (0.257) (0.248) (0.178)

Observations 995 1,581 2,384

Potassium (mg/L) 6.782 -8.39 21.0 16.7
[18.605] (19.4) (14.1) (10.2)

Observations 105 177 268

Sodium (mg/L) 163.909 128.7 597.2 464.0
[475.09] (535.9) (445.6) (298.5)

Observations 584 903 1,375

Sulphate (mg/L) 79.096 197.4 249.3 176.1
[204.296] (153.3) (121.0) (82.3)

Observations 784 1,232 1,845

Total Dissolved Solids (mg/L) 684.531 835.4 1,880.6 1,483.8
[1507.236] (1,394.2) (1,116.1) (776.8)

Observations 689 1,104 1,669

Total Fixed Solids (mg/L) 578.268 394.0 1,703.1 1,423.2

continued
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Table 7: RD Estimates for other measures of Pollution (Continued)

[1333.988] (1,347.1) (1,196.7) (893.4)
Observations 537 884 1,315

Total Suspended Solids (mg/L) 83.763 47.2 102.7 80.8
[119.596] (109.2) (56.5) (32.4)

Observations 181 302 475

Fecal coliform (CFU/100 ml) 3309110.33 12,051,694.0 10,865,867.7 8,661,662.6
[74525362.027] (15,480,806.9) (9,744,037.8) (7,822,238.4)

Observations 828 1,345 1,963

Total Coliform (CFU/100 ml) 3974308.496 13,255,235.8 12,737,779.5 10,209,250.2
[73801861.013] (17,491,647.2) (11,311,778.3) (9,094,242.0)

Observations 847 1,361 2,038

Turbidity (NTU) 52.106 8.07 16.3 23.1
[67.796] (12.6) (10.4) (8.31)

Observations 736 1,166 1,725

Distance X X X
Distance X Downstream X X X
Industry X Year FE X X X

Notes: Estimated effects of severely-polluting industrial sites on water pollution concentra-
tions in nearby rivers, immediately downstream of the sites. Dependent variables are listed
in rows. Column 2 of the table presents the mean and standard deviation (in brackets) of the
dependent variable for the 100 km bandwidth. Each cell in columns 3-5 reports the estimated
coefficient on the Downstream indicator variable, controlling linearly for distance on each side
of the industrial site along with site-by-year fixed effects. Observations are limited to moni-
toring stations within the specified bandwidth of the industrial site and are weighted using a
triangular kernel. NTU is Nephelometric Turbidity Units. CFU is Colony Forming Units. pH
is measured in base-10 log units. Standard errors (in parentheses) are clustered by village. ↩
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Table 8: RD heterogeneity by distance from river

Distance from river bin

RD Bandwidth [0-5 km] [5-10 km] [10-15 km] [15-20 km]

25 km -0.026 0.021 -0.047 -0.006
(0.016) (0.019) (0.019) (0.017)

Observations 5,873 6,040 6,542 6,837
R2 0.80 0.75 0.66 0.79

50 km 0.003 0.033 -0.009 0.00006
(0.013) (0.014) (0.014) (0.011)

Observations 12,301 12,780 13,206 13,642
R2 0.58 0.75 0.64 0.75

100 km -0.075 0.026 0.021 0.025
(0.086) (0.010) (0.014) (0.011)

Observations 24,767 24,841 24,923 25,489
R2 0.03 0.72 0.61 0.72

Distance X X X X
Distance X Downstream X X X X
Industry X Year FE X X X X

Notes: Estimated effects, by distance from the river, of severely-polluting industrial sites
on predicted yield in villages immediately downstream of the sites. Dependent variable
is always the predicted revenue value of yield. Each cell reports the estimated coefficient
from a separate regression of yield on the Downstream indicator variable, controlling lin-
early for distance on each side of the industrial site along with site-by-year fixed effects.
Each row limits the RD sample to villages within the specified bandwidth of the industrial
site. The sample for each column contains villages falling within the specified distance
bin of a flow path that passes near each industrial site, as defined in the text. Regressions
are weighted by village crop area multiplied by a triangular kernel. Standard errors (in
parentheses) are clustered by village. ↩

52



Table 9: RD heterogeneity by highly polluting industry employment share

HPI classification

RD Bandwidth [Below median] [Above median]

25 km -0.013 0.001
(0.013) (0.013)

Observations 12,521 12,771
R2 0.72 0.72

50 km 0.005 0.013
(0.010) (0.009)

Observations 25,523 26,406
R2 0.62 0.70

100 km 0.019 -0.027
(0.008) (0.045)

Observations 49,985 50,035
R2 0.60 0.04

Distance X X
Distance X Downstream X X
Industry X Year FE X X

Notes: Estimated effects, by total employment in highly polluting indus-
tries, of severely-polluting industrial sites on predicted yield in villages
immediately downstream of the sites. Dependent variable is always the
predicted revenue value of yield. Each cell reports the estimated coef-
ficient from a separate regression of yield on the Downstream indica-
tor variable, controlling linearly for distance on each side of the indus-
trial site along with site-by-year fixed effects. Sample includes villages
within 20 km of a flow path that passes near each industrial site, as de-
fined in the text. Each row limits the RD sample to villages within the
specified bandwidth of the industrial site. The sample for each column
contains villages falling within above or belowmedian total employment
in highly polluting industries across the 48 severely polluted sites. Re-
gressions are weighted by village crop area multiplied by a triangular
kernel. Standard errors (in parentheses) are clustered by village. ↩
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Table 10: RD heterogeneity by irrigation source

Irrigation Available from Source?

RD Bandwidth [No] [Yes]

Panel A: Canals
25 km -0.007 -0.019

(0.011) (0.022)

50 km 0.008 -0.001
(0.009) (0.014)

100 km -0.009 -0.015
(0.039) (0.017)

Panel B: Wells
25 km -0.039 -0.007

(0.014) (0.011)

50 km -0.007 0.007
(0.013) (0.009)

100 km -0.009 0.018
(0.040) (0.011)

Panel C: Rivers
25 km -0.007 -0.037

(0.010) (0.035)

50 km 0.008 0.014
(0.008) (0.027)

100 km -0.008 0.050
(0.027) (0.021)

Distance X X
Distance X Downstream X X
Industry X Year FE X X

Notes: Estimated effects, by presence of irrigation source, of
severely-polluting industrial sites on predicted yield in villages im-
mediately downstream of the sites. Dependent variable is always the
predicted revenue value of yield. Each cell reports the estimated co-
efficient from a separate regression of yield on the Downstream in-
dicator variable, controlling linearly for distance on each side of the
industrial site along with site-by-year fixed effects. Sample includes
villages within 20 km of a flow path that passes near each industrial
site, as defined in the text. Each row limits the RD sample to villages
within the specified bandwidth of the industrial site. The sample for
each column contains villages by the presence of irrigation source.
Regressions are weighted by village crop area multiplied by a trian-
gular kernel. Standard errors (in parentheses) are clustered by village.
↩
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Table 11: RD Estimates for District-level Actual Yield

RD Bandwidth

Dependent Variable [25 km] [50 km] [100 km]

Log Revenue Value -0.280 -0.173 -0.003
(0.187) (0.195) (0.089)

Observations 2,260 4,018 7,392
R2 0.94 0.88 0.79

Log Revenue 0.227 0.229 0.078
(0.213) (0.219) (0.154)

Observations 1,954 3,484 6,393
R2 0.96 0.90 0.83

Distance X X X
Distance X Downstream X X X
Sample Share X X X
Industry X Year FE X X X

Notes: Regressions report the downstream effect on each outcome
variable in aggregate district-level data. Districts may contain ar-
eas of land both upstream and downstream of polluting sites, as
well as areas that do not fall within our analytical sample at all
(neither upstream nor downstream). To approximate an RD de-
sign as closely as possible, we estimate regressions of the form
𝑦𝑗𝑠𝑡 = 𝛽𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚𝑗𝑠 + 𝜙𝑆𝑎𝑚𝑝𝑙𝑒𝑗𝑠 + 𝛾𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗𝑠 +
𝛿𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗𝑠 × 𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚𝑗𝑠 + 𝛼𝑠𝑡 + 𝜀𝑗𝑠𝑡. Here, the treat-
ment variable𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚𝑗𝑠 is the proportion of land within each
district that falls within the downstream sample. We control for
𝑆𝑎𝑚𝑝𝑙𝑒𝑗𝑠, the proportion of land that falls within either the down-
stream or upstream samples. Intuitively, we are asking: For districts
with similar amounts of land that fall within our sample, how dif-
ferent is the outcome variable when that land falls downstream of
the industrial site? We assume that the parts of each district that do
not fall within our sample only contribute noise – their outcomes are
uncorrelated with the treatment variable. We continue to control for
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗𝑠, the average value of the RD running variable across
villages within both upstream and downstream samples, as well as
the interaction of average distance with the treatment variable. Stan-
dard errors are clustered by village. ↩
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