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Abstract

We estimate market power in California’s surface water market. Market power may
distort the potential welfare gains from water marketing. We use a Nash-Cournot model
and derive a closed-form solution for the extent of market power in a water market
setting. We then use this solution to estimate market power in a newly assembled
dataset on California’s water economy. We show that, under the assumptions of the
Nash-Cournot model, market power in this thin market is limited.
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1 Introduction

We study the extent and impact of market power in water markets. Such markets are not

abundant globally but their prevalence has been increasing. In countries or river basins

where rights to water use are allowed to be sold or leased, water marketing reallocates

water from lower to higher value uses (Grafton et al., 2011). While reallocation is known

to substantially increase the efficiency of water use (Vaux Jr. and Howitt, 1984; Jenkins

et al., 2004; Bruno and Jessoe, 2021; Browne and Ji, 2023; Rafey, 2023), most water

markets have relatively little trading, suggesting they remain underutilized. Why? Two

leading explanations are high transaction costs (Carey et al., 2002; Regnacq et al., 2016;

Leonard et al., 2019) and market power (Rosegrant and Binswanger, 1994; Easter et al.,

1999; Jacoby et al., 2004; Holland, 2006; Chakravorty et al., 2009; Bruno and Sexton,

2020; Wheeler, 2022). Both sources of friction may distort the potential welfare gains

from water marketing, but they may call for different policy remedies, depending on which

is more important.

Our setting is California’s statewide surface water market. California is one of the

world’s largest water markets by quantity and value of water traded. At the same time,

water transactions are a small fraction of total water used, suggesting large potential gains

from trade. Recent work has made progress in quantifying the role of transaction costs

(Hagerty, 2019), but the contribution of market power is less clear. Existing conditions

may support market power: Trading of water in California is dominated by large water

districts that hold rights on behalf of farmers or households. Some of these districts are

enormous; for example, the Metropolitan Water District of Southern California serves 19

million people. The belief that large districts, in particular those that are buyers, may have

market power is held by many stakeholders and it is supported by previous literature (cf.

Tomkins and Weber, 2010; Hansen et al., 2014; Hagerty, 2019).

Our contribution is twofold. The first contribution is methodological; we propose a

novel measure of market power tailored to the setting of water markets. This measure is

derived using a Nash-Cournot model of water transactions that is inspired by the model set-

up of Ansink and Houba (2012). In Section 3 we motivate this model choice by comparing

it with a Nash-in Nash bargaining model. Under two main assumptions, discussed below,

this model allows us to derive a closed-form solution for the extent of market power in a

water market setting. We write this solution in terms of willingness-to-pay and -accept. It

is sufficiently general to be adapted and applied to other endowment economies, including

permit markets. A methodological advantage of our model is that we do not rely on a

conjectural variations approach that employs consistent conjectures (Bresnahan, 1989).
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This approach is not compatible with standard notions of rational behavior since the game

theory revolution (cf. Lindh, 1992).1 Despite of this, our solution allows for an extension

to conjectural variations that avoids prior selection of the side of the market that holds

market power.

The second contribution is that we empirically test the extent of market power in

California’s surface water market. We apply our model to a newly assembled dataset on

California’s water economy by Hagerty (2019) and Hagerty (2021). The data that we use

are 1993-2015 panel data on water transactions in California, with detailed information

on quantities and prices by water district, combined with detailed spatial data on locations

of buying and selling districts as well as geographical factors that may affect market power.

The data allows us to control for main water uses of buying and selling districts as well

as various types of associated transaction costs. The results of our estimation allow us,

ultimately, to estimate measures of market power for California’s water market.

Our model starts with two main assumptions, both of which are later relaxed. One

assumption is that we fix the side of the market on which market power resides. Our starting

point is buyer-side market power, as explained above. We then estimate the model in the

other direction, allowing for seller-side market power, and find none. To check the relevance

of this assumption, we also employ a model specification where we allow for market power

on both sides at once; we find compelling empirical support for market power on the buyer

side only. The second main assumption is that we use linear demand, originating from

a quadratic benefit function of water use. This functional form is commonplace in the

water economics literature and allows for a straightforward empirical strategy to derive our

results. Constant linear demand across selling districts may not be realistic, however, and

therefore we relax this assumption in an alternative specification where, instead, we impose

a constant price elasticity. This alternative specification, with constant price elasticity, is

presented as part of a larger class of model specifications featuring homogeneous demand,

for which we present a closed-form solution as well.

Our results suggest that market power in California’s water market is limited. Our

main specification implies that buyer power yields an average markdown of 6% of the

transaction price. This result is obtained for the linear model, but continues to hold for the

non-linear specification and is robust to other model modifications. Our result is surprising

in the sense that the thinness of water markets, including California’s, is conventionally

associated with higher possibilities of exploiting market power. Intuition for this result may

1In Hagerty (2019), the same dataset is analyzed, but the focus is on the impact of transaction costs in
obstructing water markets. As a robustness check, the potential impact of market power as an alternative
explanation for market friction is explored, using an approach that employs consistent conjectures. Other
papers, including Bruno and Sexton (2020), use this same approach.
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be found in the idea that an individual buyer rarely purchases a large fraction of any seller’s

endowment of water. Each seller not only has many potential buyers but also consumes

water directly, leaving residual supply highly elastic to each buyer.

Our results suggest that market power is not a first-order concern for policy reforms

aimed at improving the efficiency and flexibility of water allocation in California, and

perhaps in other water-scarce contexts as well. Reform efforts can focus on other consider-

ations instead, such as transaction costs and political economy factors. Proposals to, for

example, break the control of water districts over water rights may or may not be desirable

on other grounds, but market power in the statewide water market does not appear to be

one of them.

Our empirical estimates are relevant to the specific context of surface water in California,

and similar analyses in other settings may reveal different results. However, a broadly

relevant lesson is that market power is less likely to be a major problem in settings in which

water rights are the primary allocation mechanism and markets perform only secondary

reallocation. The reason is simply that potential buyers or sellers must compete with the

outside option of consuming the water one already owns. While such a configuration

would not describe a situation in which, for example, all water rights are initially held by

a single entity, it does describe the vast majority of settings in which water markets are

active or under consideration.

We first present the data and background information on California’s surface water

market in Section 2. Next, we introduce the model and our main model specification in

Section 3 and our empirical strategy in Section 4. Subsequently, we present model results

in Section 5, focusing on our estimation of market power measures for California’s water

market. This main result is compared with a conjectural variations approach and checked

for robustness in Section 6. In Section 7, we conclude.

2 Background and Data

Water in California is initially allocated each year on the basis of water rights and contracts.

Water rights originate from historical claims and continue to be recognized by the state.2

Contracts are long-term agreements held with federal and state agencies under three major

water projects: the Central Valley Project, the State Water Project, and the Lower Colorado

operations. The main agents that hold these water rights and contracts are mostly local

water utilities we refer to as water districts. Water districts divert water from rivers, or

2Most water rights are based in the legal doctrine of prior appropriation; California also recognizes
riparian rights, but these constitute a small fraction of total water use.
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receive deliveries from canals, and distribute them among their constituent farmers and/or

households.3

Following initial yearly allocations, water districts may transfer water to other parties,

typically in return for monetary compensation. Physically, it is feasible to move water

between nearly any pair of districts in the state, due to an extensive network of canals,

reservoirs, and pumps that constitute one of the world’s largest interconnected systems

of surface water infrastructure. Legally, transfers are allowed, but they are subject to

many different regulatory approval processes depending on the project or type of right the

transferred water is based on, where the water originates, the intended destination, and

the transfer pathway (California State Water Resources Control Board, 1999). Practically,

transfers are completed on a bilateral basis, without a central clearinghouse or auctions;

water managers (and sometimes independent brokers) reach out to each other and reach

agreements with the help of attorneys (Brewer et al., 2008).

While water transactions are possible, they also face transaction costs arising from

all of these frictions: the need to pump water uphill and account for evaporation losses

(conveyance charges and delivery costs), the need to comply with regulatory requirements

and delays (regulatory, verification, and monitoring costs), and the need to find potential

counterparties and reach agreement (search, information, negotiation, and contracting

costs). Transaction costs in the California water market are more thoroughly detailed by

Regnacq et al. (2016), Scheer (2016), and Hagerty (2019). Our treatment of transaction

costs is consistent with a frequently-cited definition provided by McCann et al. (2005):

“the resources used to define, establish, maintain, and transfer property rights.”

Many types of districts and other parties buy and sell water. Transactions may be

agricultural to urban (i.e., a district that primarily supplies irrigation water to farms selling

to a district that primarily supplies domestic water to residential households), agricultural to

agricultural, urban to urban, or (rarely) urban to agricultural. They also may be agricultural

or urban to environmental, in which an environmental nonprofit or government agency

purchases water from farmers or municipalities for instream use (i.e., to be left in the river).

Our analysis encompasses all these types of transactions, which are conducted bilaterally,

at arms length, and at freely negotiated prices. We exclude longstanding arrangements

between wholesale and retail water districts (e.g., the Metropolitan Water District and the

City of Los Angeles), as as well as government programs that offer to buy or sell water at

3By water district, we mean any organization that supplies water to wholesale or retail customers. Most
are local government agencies, though some are nonprofit or for-profit, and they carry various names, such
as irrigation districts, water conservation districts, or mutual water companies. Some individual farms hold
their own water rights without a district intermediary, but they constitute a small fraction of total water use
in the state.
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fixed prices (e.g., in cases of late season surplus or deficit), since observed prices are less

informative in these situations.

There are a variety of reasons why water districts trade water. The key point is that

trading allows water to be reallocated from lower- to higher-value uses. This reallocation

allows selling districts to raise additional revenue streams while buying districts do so to

adjust their water allocation strategy, minimizing losses when faced with water shortage. In

such circumstances, agricultural districts with a large share of perennial crops like almonds

and grapes will value water more than those with predominantly annual crops. Urban

districts will want to secure water for household and industrial use, while buy-backs by the

government may be crucial for environmental purposes particularly when water is scarce.

There are two main types of surface water transactions: leases and permanent sales.

Leases are short-term transfers of water volumes with a high degree of certainty. Permanent

sales are transfers of the underlying right either to divert water from rivers or to receive

deliveries from the federal or state water projects. Permanent transfers bundle an expected

annual water volume with year-to-year variability on the basis of weather conditions and

seniority. We focus our analysis on leases because their prices are easier to interpret without

strong assumptions about discount rates and risk preferences, and because they allow us

to use year-to-year variation to identify parameters in panel data. Leases also constitute a

majority of transactions, and their observed prices are much less noisy than for permanent

sales.

The timing of water management and agricultural decisions in California follows an

annual cycle known as the water year, which runs from October 1 through September

30. Nearly all precipitation in the state falls between October and March, and most water

demand aligns with the main growing season, roughly April through September. By the

end of winter, the quantity of water available for the upcoming summer is known with

high certainty. For example, yearly allocations in the Central Valley Project are initially

announced in the third week of February; they are often revised through April or later, but

the revisions are small compared with the inter-annual variation (Stene, 1995; Hagerty,

2021). As we show below, most water leases are completed during April and May for

delivery sometime during the rest of the water or calendar year. This timing comes after

districts resolve most of their uncertainty over their water endowment for that year, and

before they consume most of that endowment. Because both water transactions and market

activity follow this kind of annual cycle, we aggregate our analysis to yearly observations

of water use and transaction choices.

In focusing on surface water, our analysis also excludes transactions of groundwater

rights or permits. Groundwater markets also exist in a few basins that have undergone a
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process called adjudication to clarify property rights (Ayres et al., 2021), though in most of

the state extraction is largely unregulated and unmonitored. Legally, groundwater is fully

distinct from surface water, and trade of groundwater rights is sufficiently different as to

require distinct theoretical and empirical models. For example, groundwater transactions

typically transfer the right to pump water, rather than the water itself, and groundwater

pumping also can only be traded within a basin, whereas surface water can be transported

across long distances and may be thought of as a statewide market.

Market power in California’s water market is not unlikely. In the Cournot-Nash model

that we develop in Section 3, such power originates from the number of players on either

side of the market. If buyers are on the short side, then they can exploit their favorable

position with markdowns on the price. Several aspects have been found to affect this relative

position of buyers and sellers in California’s water market. Hansen et al. (2014) point

to the presence of some ‘dominant’ buying districts. Tomkins and Weber (2010) suggest

informational asymmetries with selling districts being less aware of buying districts’ options.

Bruno and Sexton (2020) mention capacity constraints in conveyance infrastructure as

well as an environment that is ‘conducive to forming cartel-like coalitions’. Combined,

these aspects may cause buyers to be able to exercise some degree of market power.

We use recently assembled data on California’s water economy, first described by

Hagerty (2019). We mainly use three datasets. The first is a proprietary dataset compiled

by WestWater Research, LLC, listing prices, volumes, and other information related to

water transactions in California. These raw transactions are supplemented by data on the

geographical and institutional characteristics of water districts, assembled from geospatial

files and other sources. This dataset identifies the locations of buying and selling districts

and is used to estimate distances and identify other parameters related to transaction

costs. Full details on these two datasets and their cleaning and processing are provided

in Hagerty (2019, Section 4 and Appendix G). The third is a dataset on yearly surface

water entitlements and deliveries in California, compiled from the archives of the California

Department of Water Resources, the U.S. Bureau of Reclamation, and the State Water

Resources Control Board. Details of this dataset are provided in Hagerty (2021).

The combined dataset provides panel data on water deliveries and transaction prices

in California over the 23-year period 1993-2015. The panel data is unbalanced since

districts can be involved in more than one transaction per year. Our unit of observation

is the water district. The water district is the lowest possible level where (a) we can

unambiguously match transactions to units, and (b) we have sufficient information on the

units’ entitlements and deliveries. Roughly 75% of all transactions in our transaction dataset

7



can be matched to districts with complete information on entitlements and deliveries.4

The WestWater water transactions database includes a total of 6,309 transactions over

the period 1990–2015. We impose several sample restrictions following the discussion

above. First, to focus on the surface water market, we drop transactions of permits for

small volumes of groundwater pumping within adjudicated basins in Southern California.

Second, to limit our analysis to short-term leases, we drop transactions of permanent water

rights. Third, to focus on transactions from which we can infer useful information, we

exclude transactions whose price is missing or known to be set administratively (i.e., not

at arms length).

Since we will assess transactions both from the sellers’ and from the buyers’ perspective,

we duplicate each transaction and split the dataset into two; one for buyers and one for

sellers. A minority of transactions involve more than one district on each side of the

transaction. We split up such transactions (i.e. by dividing the transaction volume equally

over the number of districts involved), such that each observation contains one selling

and one buying district. Finally, we exclude transactions executed before 1993 (since data

on water deliveries is only available from 1993 onward). We subsequently lose 28% of

our remaining observations (slightly more for buyers than for sellers) when merging our

transactions dataset with our dataset on districts’ entitlements and deliveries. Our final

dataset contains 1,131 observations, 592 for sellers and 539 for buyers.

Summary statistics (mean, standard deviation, and number of observations) on transac-

tions for both buyers and sellers are shown in Table 1. In addition to transaction volumes

and prices, this table lists statistics on six different factors that were found by Hagerty

(2019) to be costly to buyers or sellers and thereby generate transaction costs. The first

three are costly to sellers: (S1) transactions that cross the Sacramento-San Joaquin Delta,

(S2) transactions where the buyer is primarily using water for agricultural purposes, and

(S3) the total distance if water is conveyed along a river. The next three are costly to

buyers: (B1) the virtual distance between buyer and seller if water is transferred against

the direction of flow, (B2) transactions that are subject to a State Water Boards review, and

(B3) transactions that export water from a federal or state water project. Two factors cause

differences in the data between buyers and sellers. One is that, in merging transactions

with entitlements, we lose more observations for buyers than for sellers and this difference

is apparently not a random draw. The second factor is that the buyer observations include

4The alternative to districts as units of observation would be to either use planning areas or DAU-county
areas (both are hydro-geographical areas defined by the California Department of Water Resources). Doing
so would facilitate the matching with entitlements and deliveries. The downside, however, is that it would
severely reduce the number of observations in our final dataset since transactions would be lumped into
fewer units.
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a substantial share, 24%, where water is acquired for instream use, while for sellers this is

only 1%. Such transactions tend to have much lower prices, roughly 50% lower than trans-

actions where buyers are purchasing water for consumptive use. We will check whether

the inclusion of these transactions affects our results in Section 5.

Table 1: Summary statistics on transactions by sellers/buyers.

Sellers Buyers

Mean SD Obs Mean SD Obs

Price (2010$/AF) 237.49 296.79 592 185.50 173.75 539
Volume (AF) 8.74 24.70 583 8.93 26.67 530
S1: Delta crossing (1=yes) 0.33 0.47 568 . . 0
S2: Agricultural buyer (1=yes) 0.47 0.50 592 . . 0
S3: River distance (km) 0.09 0.10 568 . . 0
B1: Virtual distance (km) . . 0 0.08 0.11 534
B2: State Water Boards review (1=yes) . . 0 0.42 0.49 539
B3: Export from project (1=yes) . . 0 0.05 0.22 539

Transactions mostly occur in a limited number of hydrologic regions. Sellers are mostly

located in the Sacramento River and San Joaquin River regions, while buyers are mostly

located in the Tulare Lake, San Joaquin River, and South Coast regions. We find only few

instances of districts that both sell and buy, suggesting that we can assume fixed roles for

districts as sellers or buyers in our model that we present in the next section. Examining

transactions for which we have the exact date of transaction, we find that they are largely

spread out over months 3–7 with more than 50% of transactions occurring in April and

May, the start of the summer growing season. Transactions in our database cover a total of

161 districts, which implies a mean number of 592/161 = 3.7 transactions per district over

our 23-year period from the sellers’ perspective and 539/161= 3.3 for buyers. This low

number suggests that California’s water market is thin.5

3 Model

3.1 A model of market power in water markets

Models that are able to quantify market power range from the Cournot-Nash model to the

recent Nash-in-Nash bargaining model (Collard-Wexler et al., 2019). The former model

provides a succinct framework that centers around competition in quantities and has been

5One could argue that our data suffers from selection bias since we only observe realized transactions
and these are typically from pairs of trading districts with low transaction costs. Note, however, that we only
observe equilibrium transactions and any non-observed transaction price would be ‘out-of-equilibrium’.
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adapted to accommodate water markets (Ansink and Houba, 2012). The Nash-in-Nash

model bargaining model shares certain similarities with the Cournot-Nash model. A major

advantage is that it incorporates bilaterally negotiated contracts, which would capture

many realistic aspects of our setting.

There are, however, two disadvantages to the use of Nash-in-Nash bargaining. The first

is practical. Nash-in-Nash has yet to find effective applications in non-standard settings

such as the one given by water markets. There is no closely fitting version of Nash-in-

Nash that accommodates our setting of an endowment economy with endogenous trading

networks and transaction costs. The second disadvantage is more conceptual. Nash-in-

Nash bargaining recognizes the asymmetry of bargaining power as an additional source

of market power and is not able to distinguish the two. Collard-Wexler et al. (2019),

for example, maintain a general notion of contracts that leaves the relationship between

quantities and prices unspecified, thereby equating market power to bargaining power.

More recently, Alviarez et al. (2023) provide a formulation of Nash-in-Nash that employs

negotiated bilateral quantities and inverse demand functions to determine prices. In

general, application of Nash-in-Nash requires specifying one side of the market operating

along either the demand or supply curve. While this formulation bears similarities to

the Cournot-Nash model, it also implies a concept of market power that combines both

bargaining power and strategic quantity manipulation.

For these reasons, we resort to the established Nash-Cournot model as the structural

model in our investigation of market power in the Californian water market and leave

application of the Nash-in-Nash approach for future research. Note, though, that both

models share an important commonality. By relying on the Nash equilibrium concept, it is

presumed that an invisible hand steers individual expectations toward equilibrium even in

the absence of market institutions such as auctions or clearinghouses. In the Californian

water market, this makes sense. Water district managers and water brokers have both a

good understanding of the market and good information on aspects that may affect market

trading such as weather fluctuations, institutional rules, and different types of transaction

costs.6

We develop a Nash-Cournot model of water transactions in order to derive a novel

measure for the extent of market power in a water market setting. Consider a water

market with water transactions between sellers at origins o = 1,2, . . . ,No and buyers at

destinations d = 1, 2, . . . , Nd . Water is a homogeneous good and purchases from different

6The thinness of the market and lack of a central clearinghouse will create additional transaction costs.
Such costs are consistent with our model as is explained in Section 3.2 and shown in Appendix C where we
present a model version that includes transaction costs.
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sellers are (physically) perfect substitutes. Both sellers and buyers have endowments of

water, denoted either eo > 0 or ed ≥ 0, depending upon their role. Although variation in

rainfall and snow-melt may cause endowments to change over time, we suppress time

subscripts in this section to keep notation simple. The amount of water sold by seller

o to buyer d is denoted qod ≥ 0. Obviously, sellers cannot sell more water than their

endowments, i.e.
∑Nd

d=1 qod ≤ eo.

Water use by buyers consists of their endowment plus purchased water: Qd ≡ ed +
∑No

o=1 qod . Buyer d ’s benefit from using this total sum of water equals fd (Qd), which

is increasing in the neighborhood of ed (buyers are unsatiated at ed), strictly concave,

and twice continuously differentiable in Qd . For later reference, we introduce buyers’

willingness-to-pay, denoted WTP, which is defined as the partial derivative of net benefits

with respect to water use. Formally,

WTPd (Qd) = f ′d (Qd) . (1)

In any bilateral trade, buyer d does not pay more than their WTPd through the transaction-

specific price pod ≤ f ′d (Qd).
Water use by sellers consists of their endowment minus sold water: Qo ≡ eo −

∑Nd

d=1 qod .

Seller o’s benefit from using the unsold amount of water equals fo (Qo), which is increasing

in the neighborhood of eo (sellers are unsatiated at eo), strictly concave, and twice contin-

uously differentiable in Qo. Seller o’s net benefits of water use are now given by fo (Qo)
plus revenues from selling water, introduced below. For later reference, we introduce

sellers’ willingness-to-accept, denoted WTA, which is defined as the partial derivative of

net benefits with respect to water use. Formally,

WTAo (Qo) = f ′o (Qo) . (2)

In any bilateral trade, sellers must be financially compensated for these opportunity costs

through the transaction-specific price and this imposes pod ≥ f ′o (Qo).
Recall that we consider the case where buyers hold all market power. In the standard

oligopoly model in economics, consumers react to the quantities chosen by the competing

producers and this is modeled by setting the market price equal to the inverse demand or

price function. The price function can be interpreted as either the market-clearing price

that equates market demand to the chosen market supply, or as the willingness to pay for

the chosen market supply. In our case, seller’s WTA takes over the role of the price function.

Then WTAs can be seen as either market-clearing prices that equate market supply to the

market demand chosen by the buyers, or as the willingness to accept for the chosen market
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demand. Formally,

pod =WTAo (Qo) . (3)

Buyer d ’s expenditure on buying water from seller o is then given by qod ·WTAo (Qo).
Similar to standard Cournot oligopoly models, our model is static and all buyers take their

quantity decisions simultaneously. Therefore, each buyer maximizes over all potential

sellers to purchase water. Formally,

max
q1d ,...,qNod

fd (Qd)−
No
∑

o=1

qod ·WTAo (Qo) . (4)

Using the positive relation between Qd and qod as well as the negative relation between Qo

and qod , a buyer’s first-order condition with respect to qod for an interior solution is given

by7

f ′d (Qd)−WTAo (Qo) + qod ·WTA′o (Qo) = 0. (5)

Substituting (1) into (5) and rewriting yields

WTPd (Qd) =WTAo (Qo)− qod ·WTA′o (Qo) (6)

≥WTAo (Qo) .

Note that in a partial equilibrium of perfect competition the inequality in (6) would hold

with equality for every pair of trading districts, see e.g. Hagerty (2019). Under buyers’

market power (and −qod ·WTA′o (Qo)> 0), the willingness to pay will be larger than the

willingness to accept for every pair of trading districts while such power keeps markets

away from equality. The wedge between buyers’ WTP and sellers’ WTA reflects the possible

price range for each transaction.

As the last step we substitute (3) into (6) and rewrite to obtain the following system of

equilibrium conditions that we will use in Section 4 in our estimations:

pod =WTAo (Qo) , (7a)

pod =WTPd (Qd) + qod ·WTA′o (Qo) . (7b)

7For simplicity we omit the first-order condition for pairs of districts that do not trade. To derive this first-
order condition for pairs of trading districts we use the chain rule to obtain ∂

∂ qod
fd (Qd) =

∂
∂Qd

fd (Qd) ·
∂Qd
∂ qod
=

f ′d (Qd). Likewise, we obtain ∂
∂ qod

WTAo (Qo) =
∂
∂Qo

WTAo (Qo) ·
∂Qo
∂ qod
= −WTA′o (Qo).
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Recall that WTA′o (Qo) < 0 such that the last term of (7b) is negative. This markdown

makes the market price lower than the buyer’s willingness to pay.

In many economic contexts, it is standard to construct measures of market power

based on relative markdowns or markups.8 We, therefore, rewrite our pair-specific relative

markdowns to construct a novel pair-specific measure of heterogeneous market power

given by

WTPd (Qd)−WTAo (Qo)
WTAo (Qo)

= −
qod

Qo
·

QoWTA′o (Qo)

WTAo (Qo)
. (8)

It consists of the quantity elasticity of the seller’s WTA weighted by the ratio of transaction

volume to this seller’s total water use. This elasticity is the reciprocal of seller o’s individual

price elasticity of demand. Our estimate of the system of equations (7) provides us with

an estimate of WTA′o (Qo) and WTAo (Qo) from which we calculate our measure of market

power (8) to address such power in California’s water market.

Our model is illustrated in Figure 1. With two types of districts (buyers and sellers) and

one good (water), whose supply is given, our model is an endowment economy and so we

can visualize it in a chart with a secondary mirrored vertical axis, while the total available

water is on the horizontal axis. Demand for water is displayed using the WTAo (Qo) curve for

sellers and the WTPd (Qd) curve for buyers. Starting from water endowments eo and ed in

Figure 1, water transactions increase buyers’ water consumption and decrease sellers’ water

consumption, while closing the wedge between buyers’ WTP and sellers’ WTA. Compared

with the competitive equilibrium, buyer power implies a lower transaction volume, which

leaves a positive wedge, as discussed in this section and as illustrated in the figure.

The necessary and sufficient condition for a positive bilateral trade in the Nash-Cournot

equilibrium of Figure 1 is that WTPd (ed)>WTAo (eo), or f ′d (ed)> f ′o (eo). The interpreta-

tion is that the marginal benefit of water use at the initial endowment of each destination

exceeds the marginal benefit of water use at the initial endowment of each origin. In other

words, trade must be (marginally) beneficial at the initial endowment levels.

A relevant indicator for water authorities is the (relative) damage caused by market

power. Similar to the Herfindahl-Hirschman Index used by antitrust authorities, we investi-

gate – as an easy approximation of individual damage – the markdown times the quantity

sold:
�

WTPd (Qd)−WTAo (Qo)
�

· qod . This damage consists of the rectangle bordered by

8Closely related measures are the (markup) Lerner Index used in Industrial Organization and the mark-
down of monopsony power used in Labor Economics. For homogeneous static labor supply `, revenue R(`)

and endogenous wage w (`), the latter states that R
′
(`)−w(`)
w(`) = `·w

′
(`)

w(`) (see e.g. Ashenfelter et al., 2010). Note
the difference with (8) where we add the term − qod

Qo
to adjust for heterogeneity between pairs of trading

districts.
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Figure 1: Stylized visualization of endowments (dashed, blue) and Nash-Cournot equilib-
rium (dotted, red), where WTPd(Qd)− pod equals the markdown, see (7b). The shaded
area is an approximation of damage due to market power.

three red dotted lines and the blue dotted line in Figure 1. Next, we relate this damage to

the monetary value of own water use by individual sellers by dividing by pod ·Qo. Doing

so and making use of (3) and the measure of market power (8), yields as approximated

individual relative damage:9

−
�

qod

Qo

�2

·
QoWTA′o (Qo)

WTAo (Qo)
. (9)

Aggregate relative damage follows after summing over all sellers in the market. The

latter can be seen as a modified Herfindahl-Hirschman Index for water markets. Further

investigation of this index is left for future research.

9Our measure resembles the individual contribution to industry’s damage relative to industry’s revenue
in deriving the Herfindahl-Hirschman Index for Cournot oligopolies in Hirschman (1945). In this index,
individual market shares (in quantities) are squared and divided by the price elasticity of market demand
and then summed over all firms. In the Cournot model, both the elasticity and aggregate production are the
same across firms and then the sum of individual damage can be rewritten as a simple formula. In water
markets, heterogeneity in both Qos and elasticities rule out a simple formula.
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3.2 Main specification

The preferred specification of our model uses quadratic benefit functions for both buyers

and sellers. This specification allows us to estimate a linear model, as explained in Section 4.

Our proposed benefit functions allow for heterogeneity across buyers and sellers as well as

over time, which is why we add time subscripts from here on.

For each origin we have fot(Qot) = Qot(αot−
1
2δQot), where αot = φo+βt+ vot captures

heterogeneity in productivity between different sellers and time periods, while parameter

δ is kept constant. This benefit function implies that f ′ot(Qot) = αot −δQot , which is the

sellers’ WTA in (2). Similarly, for each destination we have fd t(Qd t) = Qd t(ad t −
1
2γQd t),

with ad t = ψd + βt + ud t and therefore f ′d t(Qd t) = ad t − γQd t , which is the buyers’ WTP

in (1). Note that in Appendix C we generalize our main model specification to also allow

heterogeneous pair-specific transaction costs. We do so after presenting the solution to our

main model specification under homogeneity in Appendix A and under heterogeneity in

productivity in Appendix B.

Recall that the necessary and sufficient condition for positive quantities in the Nash-

Cournot equilibrium is that f ′d t(ed t)> f ′ot(eot), which implies

ad t − γed t > αot −δeot . (10)

The interpretation is that the marginal benefit of water use at the initial endowment of

each destination exceeds the marginal benefit of water use at the initial endowment of each

origin. In other words, trade is (marginally) beneficial at the initial endowment levels.

4 Empirical strategy

The objective of our empirical exercise is to measure market power in California’s water

market. We do so using our measure for market power (8). Calculation of this index

requires an estimate of WTA′ot (Qot). For the linear model specification introduced in

Section 3.2, we have WTA′ot (Qot) = f ′′ot (Qot) = −δ, which we will estimate using the

system of equations (7). Note that this parameter δ is the only estimate that we need

according to our markdown measure of market power (8). To see this, note that our linear

model specification with buyer power allows us to write this index in terms of δ as well as
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transaction prices and quantities pod t and qod t , which are present in our transaction data:

WTPd t (Qd t)−WTAot (Qot)
WTAot (Qot)

= −
qod t

Qot
·

QotWTA′ot (Qt)

WTAot (Qot)

= δ ·
qod t

pod t
. (11)

Below, we present our empirical strategy to estimate parameter δ.

Given our panel data on transaction prices and quantities, we construct a fixed effects

model, which exploits variation in observed transaction prices, WTA, and WTP across

trading districts and across time. This approach rests on two requirements. The first is

that we have sufficient variation in WTA and WTP over time. In our data, such variation

over time is caused by variation in water endowments over time, which imply movements

along the benefit function of water use, thereby changing districts’ marginal benefits of

water use. Water endowments are determined by the interaction of weather fluctuations

with historically-determined allocation rules, which are markedly different across regions

of California. The second requirement is that WTA and WTP are exogenous, conditional

on unobserved district characteristics (as captured by the fixed effects). We meet this

requirement by assumption, since our model dictates that WTA (and, implicitly, WTP)

determines transaction prices.

There are two possible sources of endogeneity in our data, one of which is that omitted

variables may cause biases. Ideally, we would control for these using both year fixed effects

as well as time-invariant district-by-counterparty fixed effects (the counterparty being the

other district involved in the transaction). The latter would capture any variation in prices

caused by unobserved heterogeneity across pairs of trading districts. Unfortunately, we

do not have sufficient observations per trading district-pair to estimate such fixed effects.

We resort to separate seller- and buyer fixed effects instead. The second possible source of

endogeneity is reverse causality, which we discuss at the end of this section.

We substitute the linear specification of our model into the system of equations (7):

pod t = −δQot +φo + βt + vot , (12a)

pod t = −γQd t −δqod t +ψd + βt + ud t . (12b)

An implicit assumption underlying the regression of individual transaction prices on

(some function of) total water use levels is that districts do not hedge against the risk of

water shortage within each year. One example would be that districts buy ‘too much’ water

and will try to re-sell later that same year. We find, however, that only a handful of districts
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in our dataset have ever been active on both sides of the market within one year. Hence,

this assumption of no risk hedging seems warranted. It is also consistent with the situation

in many Western US watersheds, where predictions on water availability in early spring

provide ‘reasonably accurate forecasts’ of actual availability (Draper, 2001). Although

districts face some degree of uncertainty before the start of the growing season as water

allocation percentages are being updated, this uncertainty does not appear to affect their

trading behavior.

Without risk hedging, price differences across transactions for a particular district and

year should not occur, except in the case of transaction costs, or market power. In model

variations, we, therefore, control for various types of transaction costs, as introduced in

Section 2. Transaction costs are pair-specific and time-invariant, and they apply to either

the seller or the buyer in a specific transaction as summarized in Table 1. In the regressions

below, transaction costs are included as Todr = τrCodr +τo +τd + εodr , where vector Codr

includes seller-, buyer-, and pair-specific transaction costs, with units (mostly dummies) as

presented in Table 1, while τo and τd represent district fixed costs. Since each transaction

is assessed twice in this system, we add r to indicate whether the transaction is assessed

from the seller’s perspective (r = 0) or the buyer’s perspective (r = 1). We expect τr ≥ 0 if

r = 0 and τr ≤ 0 if r = 1. That is, transaction costs enter sellers’ WTA positively, because

these have to be compensated for sellers on top of the sellers’ net benefits, while transaction

costs enter the buyers’ WTP negatively, because these decrease sellers’ net benefits.

We add transaction costs to (12) and re-order and re-label terms:

podr t = −δQot + (φo +τo) +τd + βt +τrCodr + (vot + εodr)

= −δQot +φo +ψd + βt +τrCodr + εodr t (13a)

podr t = −γQd t −δqod t +τo + (ψd +τd) + βt +τrCodr + (ud t + εodr)

= −γQd t −δqod t +φo +ψd + βt +τrCodr + εodr t (13b)

Note that coefficient δ appears in both equations. We estimate both equations simulta-

neously by constructing two variables, Ro
od tk and Rd

od tk, that combine the coefficients on

water use from (13). We also add a counter k, since there can be multiple transactions

between one origin o and one destination d within one year t:

Ro
od tk =

¨

Qot if r = 0

qod tk if r = 1,
and Rd

od tk =

¨

0 if r = 0

Qd t if r = 1.
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The combined regression equation, which also suppresses the intercept, is:

podr tk = −δRo
od tk − γRd

od tk +φo +ψd + βt +τrCodr + εodr tk. (14)

In the next section, we will estimate variations of (14) using linear regression.

Unlike standard models of supply and demand, we are estimating a system with two

demand functions (with slopes given by parameters γ and δ), while the annual supply of

water is determined by rainfall and snow-melt. With hydrological variation between years,

the total amount of water in the system changes exogenously each year. Summed over all

districts, annual supply cannot respond to changes in price.

Despite this exogeneity in supply, individual districts may still respond to price changes

by changing the volume of water bought or sold. We therefore also estimate (14) while

instrumenting for water use with districts’ water allocations in each year. Water allocations

are the product of a time-invariant maximum entitlement for each district and a year-

varying allocation percentage. Allocation percentages are determined bureaucratically

on the basis of environmental conditions (i.e., rainfall and snowmelt in the mountains

during the preceding winter) and do not respond to demand-driven factors. They are

determined separately for each of 13 categories of water entitlements (for more details

see Hagerty (2019) and Hagerty (2021)). With district and year fixed effects, identifying

variation comes from fluctuations in each district’s annual water endowment, relative to

other districts in the same year. In line with Hagerty (2019), we argue that it is reasonable

to assume changes in water allocations reflect pure supply shocks and are uncorrelated

with changes in demand. 10

5 Results

The estimates of regression equation (14) are shown in Table 2. Recall that the aim of this

regression is to estimate the impact of market power on transaction prices via the markdown

WTPd t(Qd t)−WTAot(Qot). Applying a model with quadratic benefit functions implies that

Seller water use (i.e., RO
od tk) is one of the independent variables, whose coefficient gives the

slope of the sellers’ benefit function, parameter δ. Multiplied by transaction volume, this

parameter gives the markdown for each transaction.

In model (1), estimated using OLS, we model water use as our only explanatory variable,

combined with seller-, buyer-, role-, and year fixed effects. The coefficient on Seller water

10Hagerty (2021) shows that the effect of surface water supplies on crop choice is precisely unaffected by
the inclusion or exclusion of flexible controls for weather in the same or preceding year.
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Table 2: Estimating WTA and WTP: Linear model

Price (2010$/AF) (1) (2) (3) (4)

OLS OLS IV IV

Seller water use (1,000 AF) −0.0183∗∗ −0.0280∗∗ −0.580∗∗∗ −0.932∗∗

(coefficient −δ) (0.00821) (0.0130) (0.208) (0.445)

Buyer water use (1,000 AF) −0.00757∗∗ −0.0144∗∗ −0.309∗∗ −0.311∗∗

(coefficient −γ) (0.00336) (0.00612) (0.132) (0.156)

Seller fixed effects Ø Ø Ø Ø
Buyer fixed effects Ø Ø Ø Ø
Year fixed effects Ø
Quadratic time trend Ø Ø Ø
Transaction costs Ø
# Observations 1034 1034 879 877
# Clusters 543 337 308 307
# FE dummies 212 190 164 163
Cragg-Donald F-statistic 9.936 8.681

First-stage (Seller water use):

Seller entitlements (%) 128.3∗∗∗ 225.6∗∗

(26.75) (75.20)

Buyer entitlements (%) −76.92 −31.46
(60.13) (54.81)

First-stage (Buyer water use):

Seller entitlements (%) 6.255 −227.4∗

(47.77) (97.74)

Buyer entitlements (%) 531.7∗∗∗ 519.7∗∗∗

(134.6) (142.8)
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Coefficient estimates from fixed effects models using OLS and IV. Standard errors in parentheses, clustered by
seller, buyer, and year (but only by seller and buyer in models (2)–(4) where year fixed effects are replaced
by a quadratic time trend).

use implies that δ = 0.0183, which is more than double the size of γ = 0.00757, implied by

the coefficient on Buyer water use. The difference indicates that selling districts have steeper

demand curves than buying districts. In model (2) we attempt to improve efficiency of

these estimates. Given the large number of clusters compared to observations, we replace

year fixed effects by a time trend. No comparable simplification was found feasible for the

other fixed effects. Particularly, there is no obvious possibility to replace seller- and buyer

fixed effects with a coarser set of dummy variables. As a result of replacing the year fixed

effect by the time trend, the number of clusters decreases sharply. Compared to model (1),

the model (2) estimates for both δ and γ increase significantly.

In model (3) we instrument water use by districts’ water entitlements. The resulting
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estimates of δ and γ increase sharply, in absolute terms, compared to those of models (1)

and (2). The fact that the IV estimates are so much greater in magnitude than the OLS

estimates suggests that the OLS estimates are biased by selection into trading. In the OLS

estimates, prices appear to respond minimally to changes in water use – but this water

use is observed after water users have already conducted endogenous water transactions.

In contrast, the IV estimates isolate variation in water use driven by exogenous changes

in water supply, so it more accurately identifies the slope of the benefit function. Finally,

in model (4), we add seller- and buyer-specific transaction costs, which do not appear to

improve the model results, decreasing the F-statistic and increasing the standard error of

our main coefficient of interest. The Cragg-Donald F-statistics for the first stages of the IV

models are both higher than their critical values as reported by Stock and Yogo (2005),

suggesting that models (3) and (4) do not suffer from weak instruments. Variations of

models (3) and (4) featuring year-fixed effects rather than a time trend would yield a large

number of clusters compared to observations, similar to model (1). Such model variations

would deteriorate efficiency and would turn the estimates of δ and γ insignificant.

Based on these model results and interpretation, our preferred model is model (3) and

we use the main coefficient of interest from this specification, δ = 0.580, in the remainder

of this section.11 The interpretation of δ is that sellers’ WTA, which equals the water price in

our model, increases by $0.58/AF for each 1,000 AF sold.12 More important for our analysis,

however, is that δ is used to calculate the markdown WTPd t(Qd t)−WTAot(Qot) = δqod .

Doing so we find that the average markdown, after removing one outlier, equals $4.60/AF

(SD=8.66). This markdown corresponds to about 6.4% of the transaction price, on average,

with markedly higher markdowns (both in absolute and relative terms) for transactions

with low prices. We use transaction-specific markdowns to compute our measure of market

power (11) and plot these in Figure 2. This figure shows that our measure is relatively low.

It is markedly higher, though, for a small set of transactions with low prices, which also

tend to have the highest transaction volumes; a substantial share of these transactions is

water transferred from agriculture to environmental use. All in all, we find that market

power is relatively low in California’s water market.

11Another reason to prefer one of the larger coefficients is that we are less likely to underestimate the
impact of market power. Since our main result is that market power is rather limited, this is a conservative
choice.

12AF: acre-foot. One acre-foot equals 1,233 m3.
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Figure 2: Scatter-plot of transaction prices and the measure of market power as given
by (11) (one outlier removed).

6 Robustness

In this section, we report on six robustness checks. First, we use a conjectural variations

approach. Second, we check robustness when we focus on relevant sub-samples of the

data. Third, we apply an alternative model specification featuring non-linear benefit

functions. Fourth, we alter the calculation of districts’ water use to account for the timing

of transactions within one year. Fifth, we check whether selling and buying districts can be

reasonably assumed to have similar benefit functions. Finally, despite the results of our

conjectural variations approach, we estimate a model with seller power.

Note that this list of robustness checks is not exhaustive. Importantly, we also checked

for differential levels of market power. One such example would be differential market

power occurring in wet versus dry years. In wet years, one could imagine that buyers

have better opportunities to exercise market power. Using the Sacramento Valley Water

Year Hydrological Classification Index to classify years, we fail to find such differences.

Another option is differential market power depending on the location of buyers and

sellers. The argument would be that buyers that are more central would have more

opportunities to switch to another seller and could therefore achieve higher markdowns.

This argument ignores, however, that the Californian water market features an almost

complete hydrological network enabling water transfers between nearly any two districts.
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As a result, while central buyers would probably face lower transaction costs, they do not

have increased opportunities to exercise market power compared to buyers at the periphery.

6.1 A conjectural variations approach

We proceed to compare our results to those obtained using a conjectural variations approach

in order to verify whether our assumption of buyer power is warranted. In this approach,

the term expressing market power is multiplied by some weight that dampens this term.

A recent example that employs this approach and analyzes Californian groundwater is

Bruno and Sexton (2020). Accordingly, we introduce conjectural variations using parameter

θ ∈ [0, 1] that measures the degree of buyer power, while ξ ∈ [0, 1] measures the degree

of seller power. Conceptually, at most one of these parameters can be positive and the

other is equal to zero. Nevertheless, in order to avoid repetition of arguments, we include

both parameters simultaneously in the derivation below. We rewrite (7) to include these

market power weights:

pod t =WTAot (Qot)− ξ · qod t ·WTP′d t (Qd t) , (15a)

pod t =WTPd t (Qd t) + θ · qod t ·WTA′ot (Qot) . (15b)

The new terms capture districts’ expectations about other districts’ reactions to a change

in transaction quantities. These expectations may tend to the expected reactions under

perfect competition versus settings with buyer or seller power. As a result, the maximum

possible markups or markdowns are dampened by, respectively, θ or ξ. In our analysis

so far we have assumed (θ ,ξ) = (1,0), i.e. only buyer power. Two other special cases of

the model are seller power – which would imply (θ ,ξ) = (0, 1) – and perfect competition,

which would imply (θ ,ξ) = (0, 0).
We proceed to estimate this system of equations. The resulting values of θ and ξ will

verify whether our assumption of buyer power is warranted using this conjectural variations

approach. Taking similar steps as before, we first substitute the linear model specification:

podr t = α−δQot + γqod t − (1− ξ)γqod t

+φo +ψd + βt +τrCodr + εodr t , (16a)

podr t = a−δqod t − γQd t + (1− θ )δqod t

+φo +ψd + βt +τrCodr + εodr t . (16b)
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The combined regression equation becomes:

podr tk = −δRo
od tk−γR̃d

od tk+(1−θ )δR̂o
od tk−(1−ξ)γR̂d

od tk+φo+ψd+βt+τrCodr+εodr tk (17)

with Ro
od tk as defined in Section 4, while R̃d

od tk, R̂o
od tk and R̂d

od tk are defined as follows:

R̃d
od tk =

¨

−qod tk if r = 0

Qd t if r = 1,
, R̂o

od tk =

¨

0 if r = 0

qod tk if r = 1,
, R̂d

od tk =

¨

qod tk if r = 0

0 if r = 1.

In order to get a clear view on the parameters of interest, we apply extremum estimation

of the IV criterion function, transformed such that we optimize our parameters δ, γ, θ

and ξ. Table 3 reports the results for the case where the zero-one interval restrictions

on the parameters in the IV criterion function were dropped in order to obtain precise

estimates. We present three models. In model (1) we allow only buyer power and in

model (2) only seller power. Both models are motivated by standard practice with an

ex-ante subjective choice on which side holds market power. Ambiguity would arise if both

models were to indicate some degree of market power. For this reason, we also include the

novel and mathematically motivated “let the data speak” model (3) in which both market

power parameters are allowed to take a non-zero value. Ideally, the estimation results

would suggest which side holds market power by forcing the other side’s parameter to

a value indicating no market power. In addition to the coefficients on seller and buyer

water use, −δ and −γ, we report coefficients on both market power weights, θ and ξ,

while suppressing the coefficients on the terms R̂o
od tk and R̂d

od tk, since these coefficients are

combinations of the four parameters that are already reported.

The results in Table 3 support our assumption of buyer power. Starting with models

(1) and (2), estimates for −δ and −γ are very close to those obtained in our preferred

model (3) of Table 2. The unrestricted estimates for seller and buyer power weight, ξ and

θ , are found to lie outside the bounds of [0,1]. We find that the buyer power weight θ

is larger than 1 in model (1) while the seller power weight ξ is negative in model (2).

These results are both in a direction that is consistent with buyer market power. Imposing

the restrictions that either [ξ ∈ [0,1],θ = 0], or [ξ= 0,θ ∈ [0, 1]] leads to the expected

result: estimates at the closest boundaries of these intervals. Given that the amount of

observations in the dataset is relatively low compared to the number of parameters and

fixed effects, and hence both estimates and standard deviations cannot be extracted with

too great precision, we do not report these results but take them as an indication that buyer

power is the most reasonable assumption.

The estimation results for model (3), which allows both market power parameters to

23



Table 3: Estimating WTA and WTP: Conjectural variations

Price (2010$/AF) (1) (2) (3)

IV
Buyer power

(ξ= 0)

IV
Seller power

(θ = 0)

IV
Both

Seller total water use (1,000 AF) −0.577∗∗∗ −0.610∗∗∗ −0.573∗∗∗

(coefficient −δ) (0.162) (0.180) (0.162)

Buyer total water use (1,000 AF) −0.242∗∗∗ −0.282∗∗∗ −0.241∗∗∗

(coefficient −γ) (0.070) (0.082) (0.070)

Seller power weight −8.581∗∗ 1.251
(coefficient ξ) (3.570) (2.422)

Buyer power weight 5.664∗∗∗ 6.155∗∗∗

(coefficient θ) (0.658) (1.237)

Seller fixed effects Ø Ø Ø
Buyer fixed effects Ø Ø Ø
Year fixed effects
Quadratic time trend Ø Ø Ø
Transaction costs
# Observations 879 879 879
# FE dummies 164 164 164
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Coefficient estimates from fixed effects models using extremum estimation. The covariance matrix is computed
as a robust sandwich covariance matrix, following the theory of extremum estimation (Cameron and Trivedi,
2005, Section 6.3.4). Standard errors in parentheses. Models (1)–(3) correspond to model (3) of Table 2,
but using the conjectural variations approach. First-stage regressions are omitted for brevity.

take a non-zero value, support this result. Estimates for −δ and −γ are, again, very close

to those obtained in our preferred model (3) of Table 2. In addition, while the unrestricted

estimate for seller power weight ξ is statistically not different from zero, the unrestricted

estimate for buyer power weight θ is close to the buyer power estimate of model (1). All

three models combined, we take these results as an indication that buyer power is the most

reasonable assumption.

6.2 Sub-sample analysis

We repeat our preferred model (3) of Table 2 for three sub-samples of interest. Table 4 shows

the results of these additional regressions. For reference, we include the preferred model

as model (1). In model (2) we drop all observations that involve water for environmental

use, for instance, buy-backs by the government. Arguably, such transactions are markedly

different from transactions between districts that intend to use the water for consumptive

purposes. In model (3) we include only transactions where agricultural districts are selling,

which seem to represent the smaller, weaker actors in the market. Unfortunately, our
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sample size does not allow us to focus only on water sales from agricultural to urban

districts (slightly more than 100 transactions), which seem to represent the larger, stronger

actors capable of exercising market power (cf. Isaaks and Colby, 2020). By focusing on all

sales from agricultural districts, we may still capture the fact that agricultural districts may

have less market power than the other types of districts. Note that half of these sales are to

other agricultural districts, while the other half is shared roughly equally between buying

urban districts and environmental projects. In model (4) we drop outlier transactions. We

exclude the 5% transactions with lowest and 5% transactions with highest transaction

prices and similarly for transaction volumes.

Table 4: Estimating WTA and WTP: Sub-samples

Price (2010$/AF) (1) (2) (3) (4)

IV
preferred

IV
no env

IV
ag sellers

IV
no outliers

Seller water use (1,000 AF) −0.580∗∗∗ −0.520∗∗ −0.570∗∗∗ −0.442∗∗∗

(coefficient −δ) (0.208) (0.201) (0.179) (0.142)

Buyer water use (1,000 AF) −0.309∗∗ −0.278∗∗ −0.284∗∗∗ −0.232∗∗

(coefficient −γ) (0.132) (0.127) (0.108) (0.0906)

Seller fixed effects Ø Ø Ø Ø
Buyer fixed effects Ø Ø Ø Ø
Quadratic time trend Ø Ø Ø Ø
# Observations 879 728 778 737
# Clusters 308 248 261 250
# FE dummies 164 149 133 132
Cragg-Donald F-statistic 9.936 7.057 14.01 10.82
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Coefficient estimates from fixed effects models using IV. Standard errors in parentheses, clustered by seller
and buyer. Model (1) corresponds to our preferred model (3) of Table 2. In model (2) we drop transactions
from or to environmental use. In model (3) we keep only transactions where agricultural districts are selling.
In model (4) we drop transactions that are outliers in terms of price or volume. First-stage regressions are
omitted for brevity.

Coefficients of sub-sample Models (2)–(4) are not statistically different from those of

the preferred model. Model (2), which discards 17% of the observations, performs similarly

in terms of precision and slightly worse in terms of the F-statistic. Unexpectedly, Model (3)

does not show a higher coefficient (in absolute terms). Hence, there is no indication of

more buyer power when buying from an agricultural district. Model (4) suggests that some

of the market power we find is driven by outlier transactions in terms of price or volume,

as one could expect. Combined, these additional regressions show that our main results

are robust to including only specific sub-samples of interest.
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6.3 Constant price elasticity

In the main specification of our model, we have imposed a constant slope of the benefit

functions and a variable price elasticity. In this section, we impose instead that these

functions have a constant price elasticity and, consequently, a variable slope. In particular,

we consider the class of non-linear WTA functions that are homogeneous13. Given our earlier

assumption of differentiability, we have that Euler’s Homogeneous Function Theorem14

applies to the equilibrium conditions and our measure of market power.

For arbitrary homogeneous WTAot (Qot) of order −κo, we can rewrite the markdown

WTPd t(Qd t)−WTAot(Qot) as

−qod t ·WTA′ot (Qot) = −
qod t

Qot
·
�

Qot ·WTA′ot (Qot)
�

=
qod t

Qot
· [κo ·WTAot (Qot)] . (18)

This implies that our measure of market power (8) can be updated to

WTPd t (Qd t)−WTAot (Qot)
WTAot (Qot)

=
qod t

Qot
·κo. (19)

The empirical strategy to estimate κo has many similarities to the empirical strategy

proposed in Section 4, and we refer to Appendix D for details. The resulting regression

equation becomes:

ln podr tk = −κoR
o

od tk − κdR
d

odr tk +φo +ψd + βt + lnτrCodr + εodr tk, (20)

where R
o

od tk and R
d

od tk are modifications of Ro
od tk, respectively, Rd

od tk that are defined in

Appendix D.

We estimate variations of (20) using linear regression, similar to Table 2 for our main

model specification. Table 5 shows the estimates of four models that are similar to models

(1)–(4) of Table 2. Despite allowing for non-linear benefit functions, the models of Table 5

do not perform better than those of our linear model specification in Table 2 in terms of

the Cragg-Donald F-statistic nor the precision of our coefficient of interest, the coefficient

on Seller water use.

Again, we use model (3) to derive the main coefficient of interest for this model

specification, κo = 0.370. Similar as before, we use this coefficient to calculate the

markdown WTPd t (Qd t)−WTAot (Qot) =
qod t
Qot
· [κo ·WTAot (Qot)], which now also depends

on the ratio qod t
Qot

. We find that the mean value of this ratio is heavily skewed by 15 districts

13The function f : R→ R is homogeneous of order κ ∈ R if f (µx) = µk f (x) for all x and µ > 0.
14Let the function f : R→ R be homogeneous of order κ ∈ R. Euler’s Homogeneous Function Theorem

states that x · f ′ (x) = κ f (x).
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Table 5: Estimating WTA and WTP: Constant price elasticity

Log price (2010$/AF) (1) (2) (3) (4)

OLS OLS IV IV

Log (seller water use, 1,000 AF) −0.0000147 −0.000660 −0.370∗∗ −0.623∗

(coefficient −κo) (0.000224) (0.000670) (0.173) (0.357)

Log (buyer water use, 1,000 AF) −0.000576 −0.00185∗ −0.402∗∗ −0.458
(coefficient −κd) (0.000568) (0.00106) (0.194) (0.279)

Seller fixed effects Ø Ø Ø Ø
Buyer fixed effects Ø Ø Ø Ø
Year fixed effects Ø
Quadratic time trend Ø Ø Ø
Transaction costs Ø
# Observations 942 942 827 825
# Clusters 465 292 274 273
# FE dummies 188 166 148 147
Cragg-Donald F-statistic 7.808 5.954
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Coefficient estimates from fixed effects models using OLS and IV. Standard errors in parentheses, clustered
by seller and buyer, and year (but only by seller and buyer in models (2)–(4) where year fixed effects are
replaced by a quadratic time trend). Models (1)–(4) correspond to models (1)–(4) of Table 2, but now with
a non-linear model specification. First-stage regressions are omitted for brevity.

that sell the majority of their endowments at least once. After removing these outlier

observations, we have qod t
Qot
= 0.10 and the corresponding average markdown equals $

6.97/AF (SD=14.05), which is about 50% larger than the average markdown found for

the linear model specification, but still small in percentage terms.

Note that we do not attach much weight to the results from this specification, both

because of its sensitivity to removing outliers and also since the functional form of regression

equation (20) depends on the specific implementation of a first-order Taylor expansion

(see Appendix D for details), which may not be warranted. With these caveats in mind, the

results of a model specification with constant price elasticity are largely consistent with

those from the linear model specification.

6.4 Transaction timing

So far we have ignored information on the timing of transactions. As a result, in case

of multiple transactions per district per year, each district’s water use—as captured by

variables Ri
od tk, i = o, d, in (14)—is identical for each of these transactions within one

year. This approach is consistent with the assumption of no hedging against the risk of

water shortage, such that districts can foresee how much water they are going to sell or

buy within a year. In this section, we take the alternative approach and update Qd t and
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Qot after each transaction. This implies that we use counter z to calculate water use (just)

after transaction j = 1,2, . . . as Qot j = eot −
∑ j

z=1 qod( j)tz and Qd t j = ed t +
∑ j

z=1 qo( j)d tz,

where d( j) is the jth counterparty of o and o( j) is the jth counterparty of d. When multiple

transactions happen to occur within the same month, we order them by transaction volume

such that smaller transactions go first. In an alternative specification, we reverse this order.

Table 6 shows the results. For reference, we include the preferred model from Table 2

Table 6: Estimating WTA and WTP: Dynamic updating

Price (2010$/AF) (1) (2) (3)

IV
preferred

IV
dynamic

IV
dynamic reversed

Seller water use (1,000 AF) −0.580∗∗∗ −0.530∗∗∗ −0.551∗∗∗

(coefficient −δ) (0.208) (0.186) (0.195)

Buyer water use (1,000 AF) −0.309∗∗ −0.306∗∗ −0.305∗∗

(coefficient −γ) (0.132) (0.127) (0.128)

Seller fixed effects Ø Ø Ø
Buyer fixed effects Ø Ø Ø
Quadratic time trend Ø Ø Ø
# Observations 879 879 879
# Clusters 308 308 308
# FE dummies 164 164 164
Cragg-Donald F-statistic 9.936 11.15 10.58
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Coefficient estimates from fixed effects models using IV. Standard errors in parentheses, clustered by seller
and buyer. Model (1) corresponds to our preferred model (3) of Table 2. In models (2) and (3), water use is
updated dynamically in case of multiple transactions per district per year. In model (2), multiple transactions
in one month are ordered from small to large volume, in model (3) this is reversed. First-stage regressions
are omitted for brevity.

as model (1). In models (2) and (3), we repeat this model using our dynamically updating

measure of water use. The results show that the effect of transaction timing on prices is

negligible and that model (1) still offers a conservative estimate of market power.

6.5 Sellers and buyers on one demand curve

So far we have estimated buyers’ and sellers’ demand curves separately rather than esti-

mating a combined curve. We reject this possibility with multiple arguments. First, we test

for equivalence of coefficients using our preferred model (3) of Table 2. Based on a Wald

test (F(1,356)=4.92, p = 0.027), we reject equality of these coefficients. Second, we use

theory and data to argue that selling and buying water districts differ in key characteristics,

implying that buying districts cannot be on the same demand curve as selling districts, and

hence our approach of modeling two distinct curves is correct.
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Table 7 compares selling and buying districts in terms of their main type of water use

(urban, agriculture, environment), levels of water entitlements, and water use, as well as

whether or not a district trades with more than one counterparty in any given year. Clearly,

Table 7: Key differences between sellers and buyers.

Sellers Buyers

Mean SD Mean SD

District: urban (share) 0.08 0.28 0.29 0.45
District: agriculture (share) 0.91 0.29 0.47 0.50
District: environment (share) 0.01 0.09 0.24 0.43
Water entitlements (1,000 AF) 193.72 298.63 207.97 570.51
Total water use (1,000 AF) 176.22 280.61 251.65 578.29
More than one counterparty (yes=1) 0.36 0.48 0.55 0.50

selling and buying districts differ in their types of water use. Sellers are more likely to use

water for agriculture, while buyers are more likely to use water for urban or environmental

uses. The key variable that underlines our argument that sellers and buyers are on different

demand curves for water is Water endowments. Table 7 shows that buying districts have

higher water entitlements than selling districts, and by purchasing water they end up

with even higher levels of water use compared with selling districts. If selling and buying

districts would have identical demand curves for water, then districts with higher water use

would be selling water, rather than buying. In Figure 1 this implies that ed would be located

to the right of the competitive Qd . This location implies that WTPd(Qd)<WTAo(Qo), which

is inconsistent with the occurrence of observed water transactions. It follows that sellers

and buyers cannot be on the same demand curve.

A final difference between selling and buying districts is related to the dummy variable

that measures whether a district has More than one counterparty. Comparison indicates

that buyers have 53% more transactions with multiple counterparties than sellers do. This

statistic points to buyer power, with sellers being on the long side of the market.

6.6 Seller power

Our main result is that buyer power is relatively low. Going against previous literature,

stakeholder beliefs, and the results of our conjectural variations approach of Section 6.1,

we now reverse our model to estimate seller power. This allows us to check if, rather

counter-intuitively, a model with seller power would better explain our data than our
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model with buyer power. We start by adapting (7), as follows:

pod =WTAo (Qo)− qod ·WTP′ (Qd) , (21a)

pod =WTPd (Qd) . (21b)

Taking similar steps as in Section 4, the resulting regression equation becomes:

podr tk = −δR̃o
od tk − γR̃d

od tk +τrCodr +φo +ψd + βt + εodr tk, (22)

where R̃o
od tk and R̃d

od tk are modifications of Ro
od tk, respectively, Rd

od tk that are defined as

follows:

R̃o
od tk =

¨

Qot if r = 0

0 if r = 1,
and R̃d

od tk =

¨

−qod tk if r = 0

Qd t if r = 1.

Table 8: Estimating WTA and WTP: Seller power

Price (2010$/AF) (1) (2) (3) (4)

OLS OLS IV IV

Seller water use (1,000 AF) −0.0162∗∗ −0.0251∗∗ −0.576∗∗∗ −0.867∗∗

(coefficient −δ) (0.00786) (0.0126) (0.212) (0.435)

Buyer water use (1,000 AF) −0.00764∗∗ −0.0145∗∗ −0.329∗∗ −0.324∗∗

(coefficient −γ) (0.00341) (0.00620) (0.147) (0.159)

Seller fixed effects Ø Ø Ø Ø
Buyer fixed effects Ø Ø Ø Ø
Year fixed effects Ø
Quadratic time trend Ø Ø Ø
Transaction costs Ø
# Observations 1034 1034 879 877
# Clusters 543 337 308 307
# FE dummies 212 190 164 163
Cragg-Donald F-statistic 8.507 8.231
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Coefficient estimates from fixed effects models using OLS and IV. Standard errors in parentheses, clustered by
seller, buyer, and year (but only by seller and buyer in models (2)–(4) where year fixed effects are replaced
by a quadratic time trend). Models (1)–(4) correspond to models (1)–(4) of Table 2, but now with seller
power. First-stage regressions are omitted for brevity.

Results of this regression are displayed in Table 8. The resulting coefficients are very

similar to those of models (1)–(4) of our main specification with buyer power in Table 2.

Importantly, with seller power our measure of market power is now based on the coefficient

on Buyer water use, i.e. γ rather than δ. Restricting the comparison to our preferred

model (3), we find that model (3) of Table 8 does not perform better than model (3) of
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Table 2 when comparing either the Cragg-Donald F-statistic or the precision of our coefficient

of interest. In case one would still assume seller power, we obtain from model (3) of Table 8,

that γ= 0.329, which is lower than δ = 0.580 from model (3) of Table 2. This difference

would imply measures of market power to be lower under seller power than under buyer

power.

7 Conclusion

Using a Nash-Cournot model, we derive a closed-form solution for the extent of market

power in a water market setting and we construct related measures for market power.

Applying our model to surface water transactions in California over the period 1993-2015,

we find only limited market power in California’s water market, despite the thinness of this

market. Our main specification implies that buyer power yields an average markdown of

6% of the transaction price. This result is important in the context of current discussions

on Californian water market reform (cf. Maples et al., 2018) which, perhaps, should focus

on other distorting factors, most notably transaction costs (Carey et al., 2002; Regnacq

et al., 2016; Hagerty, 2019; Leonard et al., 2019).

Our model has three main assets: (1) it features a closed-form solution, (2) it does not

rely on conjectural variations, and (3) it is sufficiently flexible that it can be applied to

other types of endowment economies, including permit markets. On the downside, our

model requires choosing a specific functional form for WTP and WTA that may not be

warranted. In addition, while our current application is quite clear in terms of the side of

the market where market power resides, this may not be the case in other applications.

One explanation for the limited extent of market power in California is that transaction

quantities are, generally, small. These quantities enter our measure of market power

linearly such that small quantities imply low markdowns. By the same line of reasoning,

high prices also imply low markdowns. This effect was illustrated clearly in Figure 2.

Another explanation for the limited extent of market power is that, although California’s

water market is ‘thin’ in trades, it is ‘thick’ in possibilities to trade. Recall from Section 6

that California features an almost complete hydrological network such that nearly any two

districts can trade water. The fact that many do not does not imply that such trades are

not feasible. Rather, it implies that such districts have high pair-specific transaction costs,

which causes a relatively low WTP or a relatively high WTA. The threat of a counterparty

switching to a competing district limits the possibility to exercise market power (Funaki

et al., 2020). The extent to which such threats affect equilibrium outcomes is an avenue

for future research.
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Appendices

A Thick markets under homogeneity

In this appendix, we illustrate the Nash-Cournot equilibrium concept for a tractable and

symmetric version of our main model specification assuming fully connected water markets,

homogeneity on each side of the market, and buyer market power. We derive general

formulas for equilibrium quantities, prices, etc. We conclude with an example to illustrate

that there are unrealistically many equilibrium trades and that homogeneity on each side

of the market is causing this. In Appendix B and C, we discuss why heterogeneity in the

main specification of our model leads to thin markets as observed in the Californian data

set.

Formally, we assume arbitrary numbers of buyers (Nd) and sellers (No). Homogeneity

on each side of the market imposes αot = α for all o and ad t = a for all d. We maintain the

necessary and sufficient condition (10) for positive trades, which can now be written as

a− γed > α−δeo. For each individual buyer, we can write the maximand of equation (4),

i.e. the buyer’s profit function, for all origins with which this buyer trades as

πd = fd(Qd)−
No
∑

o=1

qod ·
�

WTA(Qo)
�

=

�

ed +
No
∑

o=1

qod

��

a− 1
2γ

�

ed +
No
∑

o=1

qod

��

−
No
∑

o=1

qod ·

�

α− 1
2δ

�

eo −
Nd
∑

d=1

qod

��

.

(A.1)

Applying (5), we take the derivative of the buyer’s profit function (A.1) with respect to qod

and, by symmetry, we simplify the resulting condition by writing qod = q:

a− γ(ed +Noq)−α+δ(eo −Ndq)−δq = 0. (A.2)

This condition implies a− γed −α+δeo = [Noγ+ (Nd + 1)δ]q > 0. Thus, the equilibrium

quantity from seller to buyer qod equals

q∗ = q∗od =
a− γed −α+δeo

Noγ+ (Nd + 1)δ
, (A.3)

which is positive for all o and d by (10). We obtain a thick market in which every seller

trades with every buyer.

In case the number of available buyers Nd and/or the number of available sellers No
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increases, then each buyer would buy less water from each individual seller. The quantity

in equilibrium can be expressed differently by substituting S= α− δeo and B = a − γed .

Thus, q∗ = (B− S)/(Noγ+ (Nd + 1)δ). The numerator of this expression consists of the

marginal benefits of water use at the initial endowments. If the buyers’ marginal benefit B

increases, trade will increase. In contrast, if the sellers’ marginal benefit S increases, trade

will decrease. The effects on trade of parameters a, α, γ, δ and initial endowments ed and

eo follow immediately through their effects on either B or S. For example, an increase in the

initial endowment ed of individual buyers implies that individual buyers buy less. Similarly,

an increase of the initial endowment eo of individual sellers implies that individual sellers

sell more.

We use equilibrium quantities as derived in (A.3) to derive the sellers’ and buyers’

equilibrium (marginal) benefits as well as prices. Using (2), we have that WTP(Qd) =
a−γQd and WTA(Qo) = α−δQo. By symmetry, we can therefore write the marginal benefit

for, respectively, each buyer and each seller in equilibrium:

WTP(Q∗d) = a− γ
�

ed +Noq∗od

�

=
(Nd + 1)δB+NoγS

Noγ+ (Nd + 1)δ
, (A.4a)

WTA(Q∗o) = α−δ(eo −Ndq∗od) =
(Noγ+δ)S+NdδB

Noγ+ (Nd + 1)δ
. (A.4b)

From the WTP function we directly obtain Qd = (a−WTP(Qd))/γ. The other component

of benefit function fd is (a − 1
2γQd) and it can also be expressed in terms of this WTP:

�

a− 1
2γQd

�

= 1
2 (a+ a− γQd) =

1
2 (a+WTP(Qd)). Combining these expressions yields the

buyers’ benefit function:

fd(Q
∗
d) = Q∗d(a−

1
2
γQ∗d) =

1
2γ

�

a2 − (WTP(Q∗d))
2
�

=
1

2γ

�

a2 −
�

(Nd + 1)δB+NoγS
Noγ+ (Nd + 1)δ

�2�

. (A.5a)

Similar steps are applied to obtain the sellers’ benefit function:

fo(Q
∗
o) = Q∗o

�

α−
1
2
δQ∗o

�

=
1

2δ

�

α2 −
�

WTA(Q∗o)
�2�

=
1

2δ

�

α2 −
�

(Noγ+δ)S+NdδB
Noγ+ (Nd + 1)δ

�2�

. (A.5b)

Given buyer power, equilibrium price equals the willingness to accept. Using (A.4b),
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we have

p∗ = p∗od =WTA(Q∗o) =
(Noγ+δ)S+NdδB

Noγ+ (Nd + 1)δ
, (A.6)

which is positive for all o and d. The importance of this last result is that the Law of

Uniform Price holds in a fully connected water market with homogeneity on each side

and buyer market power. It is a consequence of every seller trading with every buyer and

every buyer trading with every seller. In doing so, each seller equates its willingness to

accept across all the links it trades (which are all links to this agent’s buyers) and each

buyer accomplishes the same markdown across all the links it trades (which are all sellers

in the market).

For completeness, we also verify that equation (6) holds. This equation states that the

difference between WTP and WTA equals −qodWTA′o (Qo) = δq∗od > 0. Substitution of our

equilibrium expressions (A.4b) and (A.4a) gives

WTP(Q∗d)−WTA(Q∗o) =
(Nd + 1)δB+NoγS

Noγ+ (Nd + 1)δ
−
(Noγ+δ)S+NdδB

Noγ+ (Nd + 1)δ

= δ
B− S

Noγ+ (Nd + 1)δ

= δq∗od . (A.7)

Therefore, equation (6) holds and the difference is positive, as it should. This completes

the derivation of the symmetric version of the main specification of our model.

Figure 3 illustrates the case of a thick market with nine equilibrium trades among three

homogeneous sellers and three homogeneous buyers. Each arrow represents a trade. In

each trade a quantity q∗od =
B−S

3γ+4δ of water is exchanged at the uniform price p∗ = p∗od =
(3γ+δ)S+3δB

3γ+4δ . This thick market result is due to homogeneity on each side of the market. A

thick market would also arise for relatively low homogeneous transaction costs per unit of

water. These can be accommodated by subtracting such costs from the coefficients a and α.

As long as B− S> 0, the quantities of (A.3) remain positive and imply that a thick market

arises in equilibrium. In order to explain thin markets, we need heterogeneity on each side

of the market. Such heterogeneity might be due to asymmetries in the productivity of water

(see Appendix B) or to substantial and heterogeneous transaction costs (see Appendix C).
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Figure 3: A fully connected market consisting of six agents who may buy or sell water from
each other. The (marginal) productivity of the three identical origins O1,O2, O3 is lower
than that of the three identical destinations D1,D2,D3. The vectors illustrate the direction
of Nash-Cournot equilibrium trades. It is a thick market in which every agent trades with
every agent on the other side and nine of the available fifteen links are utilized.

B Thin markets under heterogeneity: productivity

California’s water market is thin and the insights of Appendix A point to heterogeneity on

each side of the market as its main cause. Heterogeneity arises with respect to substantial

differences in productivity across districts and substantial pair-specific transaction costs as

identified in Table 1. In this appendix, we generalize the linear model specification intro-

duced in Section 3.2 to allow for heterogeneity in productivity and we assess transaction

costs in Appendix C.

The extended analysis of convex nonlinear program (4) that takes zero-trade boundary

solutions into account would incorporate non-negativity conditions −qod ≤ 0 (in standard

form) with shadow price λod ≥ 0 and employ the Karush-Kuhn-Tucker conditions given

by15

f ′d (Qd)−WTAo (Qo) + qod ·WTA′o (Qo) +λod = 0, (B.1a)

λod · qod = 0. (B.1b)

As before, a positive trade qod > 0 implies a shadow price λod = 0 and we obtain first-order

conditions (5) as stated in the main text. Furthermore, zero trade implies qod = 0 and λod

solves (B.1a). Because the shadow price is non-negative and qod = 0, we obtain the weak

inequality ≤ in (5) and its simplification f ′d (Qd)≤WTAo (Qo), i.e. no marginal benefits of

15The full analysis would also incorporate feasibility at each origin o given by
∑

d ′ qod ′ ≤ eo with shadow
price µod ≥ 0. The modification of the Karush-Kuhn-Tucker conditions includes an extra −µod term in (B.1a)
as well as the extra condition µod ·

�∑

d ′ qod ′ − eo

�

= 0. In our database, no seller sells his entire endowment,
implying a strict inequality in the feasibility constraint and µ= 0.
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trade at total consumption levels Qd and Q0.

Consider a setting where all buyers and all sellers are heterogeneous and no transaction

costs. We update our benefit functions to allow for heterogeneity in terms of benefit

parameters a, α, γ, and δ, while suppressing time subscripts to keep notation simple. For

each destination we now have fd(Qd) = Qd(ad −
1
2γdQd) and for each origin we now have

fo(Qo) = Qo(αo −
1
2δoQo). Therefore f ′d(Qd) = ad − γdQd , which is the WTP in (1), while

f ′o (Qo) = αo − δoQo, which is the WTA in (2). We number sellers as o = 1,2,3, . . . and

buyers as d = −1,−2,−3 . . .. Subscript od = 2− 1 implies that seller 2 delivers to buyer 1.

Almost all contracts in our database consist of trades between a single seller and a

single buyer who only trade with each other and non-traders in the background as potential

alternative trading partners. Without loss of generality, consider one such non-trader

on each side of the market. If we number seller 1 and buyer −1 as the trading parties

with q1−1 > 0, then seller 2 and buyer −2 do not trade, i.e. q1−2 = q2−1 = q2−2 = 0. The

equilibrium conditions are derived from buyer −1 who maximizes over quantities q1−1

and q2−1 and from buyer −2 who maximizes over quantities q1−2 and q2−2. After adding

subscripts d and o, we take the derivative of the buyer’s profit function (A.1) with respect

to qod and obtain:

ad − γd(ed + q1d + q2d)−αo +δo(eo − qo−1 − qo−2) +δoqod ≤ 0. (B.2)

For o = 1,2 and d = −1,−2, we have q1−1 > 0 and q1−2 = q2−1 = q2−2 = 0, so we obtain

four equilibrium conditions:

a−1 − γ−1(e−1 + q1−1)−α1 +δ1(e1 − q1−1) +δ1 · q1−1 = 0, (B.3a)

a−1 − γ−1(e−1 + q1−1)−α2 +δ2e2 ≤ 0, (B.3b)

a−2 − γ−2e−2 −α1 +δ1(e1 − q1−1) ≤ 0, (B.3c)

a−2 − γ−2e−2 −α2 +δ2e2 ≤ 0. (B.3d)

Before solving, we combine and rewrite these four equilibrium conditions in terms of

equilibrium WTP or WTA. In doing so, note that because q1−1 ≥ 0, we can rewrite the first

condition as a weak inequality: a−1 − γ−1(e−1 + q1−1)−α1 +δ1(e1 − q1−1) = −δ1q1−1 ≤ 0.
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We obtain

α1 −δ1(e1 − q1−1)≥max{a−1 − γ−1(e−1 + q1−1), a−2 − γ−2e−2},

α2 −δ2e2 ≥max{a−1 − γ−1(e−1 + q1−1), a−2 − γ−2e−2},

a−1 − γ−1(e−1 + q1−1)≤min{α1 −δ1(e1 − q1−1),α2 −δ2e2},

a−2 − γ−2e−2 ≤min{α1 −δ1(e1 − q1−1),α2 −δ2e2}.

The first two conditions indicate that, in equilibrium, the seller’s WTA must be equal to

or larger than the highest WTP for all buyers in the market, independent whether these

sellers trade or not. The last two lines indicate that, in equilibrium, the buyers’ WTP must

be equal to or lower than the highest WTA from sellers in the market, independent whether

these buyers trade or not. These insights generalize to any market with No sellers and Nd

buyers independent whether these trade or not. These conditions imply that none of the

pairs of trading districts has incentives to expand equilibrium trade.

We now check each of the equilibrium conditions in (B.3). Solving condition (B.3a)

gives equilibrium trade between seller o = 1 and buyer d = −1. It is a special case of (A.3)

and we obtain

q∗1−1 =
a−1 − γ−1e−1 −α1 +δ1e1

γ−1
. (B.4)

Under a−1 − γ−1e−1 > α1 − δ1e1, which is a straightforward modification of (10), this

quantity is positive. Substitution of q∗1−1 into condition (B.3b) yields α1−δ1e1 ≤ α2−δ2e2.

Evaluated at the initial endowments, seller 1’s WTA is lower than than that of seller 2,

making seller 1 more efficient in supplying water. Rewriting after substitution of q∗1−1 into

condition (B.3c) yields

a−2 − γ−2e−2 ≤
�

1−
δ1

γ−1

�

(α1 −δ1e1) +
δ1

γ−1
(a−1 − γ−1e−1). (B.5)

For δ1
γ−1
∈ [0, 1], the right-hand side is the convex combination of seller 1’s WTA and buyer 1’s

WTP, both evaluated at the initial endowments. For the boundary case δ1 = γ−1, the right-

hand side simplifies to a−1 − γ−1e−1. Evaluated at the initial endowments, buyer −1’s WTP

is higher than that of buyer −2, making buyer −1 more efficient in purchasing water. If

the gap in WTP between the two buyers is positive, then condition (B.5) also holds for δ1

almost equal to γ−1. Finally, condition (B.3d) specifies the condition that non-trading seller

o = 2 and non-trading buyer d = −2 do not want to trade with each other. If rewritten as

a−2 − γ−2e−2 ≤ α2 −δ2e2, it is the complement of modified condition (10).
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To summarize, the configuration in which seller 1 exclusively trades with buyer −1

arises naturally in case seller 1 has a substantially lower WTA than competing seller 2,

while buyer −1 has a substantially higher WTP than competing buyer −2. Also, the WTA of

seller 2 is larger than the WTP of buyer −1. By the preceding discussion of the equilibrium

conditions in (B.3), a sufficient condition for water trade between seller 1 and buyer −1 is

the following:

α2 −δ2e2 > a−1 − γ−1e−1 > α1 −δ1e1 > a−2 − γ−2e−2. (B.6)

Equilibrium (marginal) benefits and prices for the heterogeneous case can be determined

similarly as was done in Appendix–A.

So far, we have covered trades between a single seller and a single buyer who only

trade with each other and non-traders in the background as potential alternative trading

partners. Two other types of transactions occur frequently in the data, as introduced in

Section 2. These are transactions with either one seller with multiple buyers or one buyer

with multiple sellers. Such transactions can be analyzed in a similar way. First, expressions

for the traded quantities need to be derived from all equations for which inequalities

hold, which would be special cases of (A.3) when trading buyers are homogeneous and

trading sellers are homogeneous. Second, the expressions for the quantities need to be

substituted in all equations for which weak inequalities hold, which would yield a system

of inequalities similar to (B.3a)-(B.3d), but with more inequalities. Deriving this system

would be cumbersome and would involve a lot of repetition of the case with a single seller

and single buyer without generating more insight.

The main insight is intuitive. The lowest WTA of non-trading sellers is higher than

the highest WTP of trading buyers. Similarly, the highest WTP of non-trading buyers is

lower than the lowest WTA of trading sellers. Combined, the most productive buyers trade

with the least productive sellers, which illustrates the role of heterogeneous productivity in

water markets.

C Thin markets under heterogeneity: transaction costs

After assessing heterogeneity in productivity across districts in Appendix B, we now consider

heterogeneity due to substantial pair-specific transaction costs. Our starting point is that

marginal transaction costs are constant (Hagerty, 2019). Although conceptually similar

to heterogeneous productivity, the analysis requires some additional notation and subtle

modifications of willingness to accept and willingness to pay. The arguments in this
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appendix justify our empirical strategy as explained in Section 4.

Formally, Todr denotes agent-dependent, pair-specific, and constant marginal transaction

costs for seller o and buyer d. Index r = o, d indicates to whom these costs apply to, either

the seller or the buyer. So, Todo are seller o’s marginal transaction costs of trading with

buyer d while Todd are d ’s marginal transaction costs of trading with o. Seller o’s aggregate

transaction costs over all possible trades are denoted
∑Nd

d̂=1
Tod̂o · qod̂ and those of buyer d

are denoted
∑No

ô=1 Tôdd · qôd .

The Nash-Cournot equilibrium with buyer market power assumes that sellers are price

takers. Seller o’s net benefits of water use become fo (Qo) plus revenues from selling water

minus transaction costs. Due to the negative relation between Qo and qod , we obtain

that the partial derivative with respect to qod is given by − f ′o (Qo) + pod − Todo. Seller o’s

first-order condition for trading with buyer d as a price taker can be rewritten as

pod = f ′o (Qo) + Todo. (C.1)

The market-clearing price equals the opportunity costs of further marginal changes in

selling water plus full compensation for seller o’s transaction costs involved. Since pair-

specific transaction costs are heterogeneous, the Law of Uniform Price ceases to hold. In

a Nash-Cournot equilibrium, buyer d ’s expenditure on buying water from seller o is then

given by qod ·
�

WTAo (Qo) + Todo

�

. Buyer d ’s optimization problem is given by

max
q1d ,...,qNod

fd (Qd)−
No
∑

o=1

qod ·
�

f ′o (Qo) + Todo

�

−
No
∑

o=1

Todd · qod . (C.2)

Proceeding as in the main text, buyer d ’s first-order condition with respect to qod for an

interior solution is given by

f ′d (Qd)− Todd − f ′o (Qo)− Todo + qod · f ′′o (Qo) = 0. (C.3)

This last equation can be rewritten in terms of a pair-specific willingness to accept and a pair-

specific willingness to pay by modifying definitions (1) and (2) to include transaction costs.

To achieve this, define WTAod (Qo) = f ′o (Qo)+Todo and WTPod (Qd) = f ′d (Qd)−Todd .16 That

is, transaction costs enter sellers’ WTA positively, because these have to be compensated

for sellers on top of the sellers’ net benefits, while transaction costs enter the buyers’ WTP

negatively, because they decrease sellers’ net benefits. These modifications justify our

16 Note that WTA′od (Qo) =
d

dQo

�

f ′o (Qo) + Todo

�

= f ′′o (Qo).
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empirical strategy in Section 4. With these modified definitions, after rewriting we obtain

WTPod (Qd) =WTAod (Qo)− qod ·WTA′od (Qo) . (C.4)

Our modified pair-specific measure of heterogeneous market power is now equal to

WTPod (Qd)−WTAod (Qo)
WTAod (Qo)

= −
qod

Qo
·

QoWTA′od (Qo)

WTAod (Qo)
. (C.5)

The necessary condition for trade in our main specification with heterogeneous produc-

tivity is stated in 10. It can be easily modified for transaction costs by applying the main

insight of this appendix: including these costs in the willingness to accept and willingness

to pay. We obtain
�

ad − Todd

�

− γd ed >
�

αo + Todo

�

− δoeo as if the model has modified

coefficients aodd = ad −Todd and αodo = αo +Todo, which is how to read the system of equa-

tions (13a) and (13b). Positive trade requires sufficiently small pair-specific transaction

costs depending on differences in productivity between the seller and buyer.

We conclude this appendix with two illustrations of thin markets by adjusting Figure 3

such that transaction costs of some pairs are sufficiently high as to prevent trade. To keep

both analyses tractable, we ignore heterogeneity as discussed in Appendix B and we simply

impose condition (10). As a result, we have αodo = α and aodd = a for all o and d; and

S= a−γed > α−δeo = B. Recall that S can be seen as willingness to accept at eo and B as

willingness to pay at ed , both in the absence of transaction costs.

The left panel of Figure 4 illustrates a thin market with three identical sellers, denoted

O1,O2,O3, and three identical buyers, each denoted D1,D2, D3. The pairs (O1,D1), (O2, D2)
and (O3,D3) are involved in 1 seller-1 buyer trades. This equilibrium may arise if transaction

costs within each trading pair are zero and elsewhere these are larger than B− S. So, the

results of Appendix A apply for No = Nd = 1 in each trade and we obtain as the expressions

for the equilibrium quantity and price within each pair:

q∗od =
B− S
γ+ 2δ

> 0 and p∗ =
(γ+δ)S+δB
γ+ 2δ

∈ [S,B] . (C.6)

The right panel of Figure 4 illustrates a thin market with four identical sellers, de-

noted O1,O2, O3, O4, and two identical buyers, denoted D1, D2. The trios (O1, O3,D1) and

(O2, O4, D2) are involved in 2 seller-1 buyer trades. This equilibrium may arise if transaction

costs within each trading trio are zero and elsewhere these are larger than B− S. So, the

results of Appendix A apply for No = 2 and Nd = 1 in each trade and we obtain as the
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Figure 4: Fully connected water markets similar to Figure 3. Left panel: three identical
origins and three identical destinations. Transaction costs lead a thin market in which
only three of the available fifteen links are utilized. Right panel: four identical origins and
two identical destinations. Transaction costs lead a thin market in which only four of the
available fifteen links are utilized.

expressions for the equilibrium quantity and price within each pair:

q∗od =
B− S

2(γ+δ)
> 0 and p∗ =

(2γ+δ)S+δB
2(γ+δ)

∈ [S,B] . (C.7)

D Non-linear demand

In this appendix, we present our empirical strategy for the model of Section 6.3 featuring

a non-linear WTA function that is homogenous. Our aim is to estimate κo so that we can

measure market power for this model specification.

The strategy is largely similar to that of Section 4 for the linear model specification. We

start with the following system of regression equations, based on (7), and substitute (18)

to obtain

pod = WTA (Qo) , (D.1a)

pod = WTP (Qd)−κo ·
qod

Qo
·WTA (Qo) . (D.1b)

Substituting pod for WTAo(Qo), we solve the last equation for pod , which yields the non-

linear system

pod = WTA (Qo) , (D.2a)

pod =
�

1+
qod

Qo
·κo

�−1

WTPd (Qd) . (D.2b)
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This system can be written in logarithmic form as

ln pod = ln WTA (Qo) , (D.3a)

ln pod = ln WTP (Qd)− ln
�

1+
qod

Qo
·κo

�

. (D.3b)

To extract parameter κ out of the last term, we approximate it by the first-order Taylor

expansion of the logarithmic function around 1.17 This yields the following non-linear

system:

ln pod = ln WTA (Qo) , (D.4a)

ln pod = ln WTP (Qd)−κo ·
qod

Qo
. (D.4b)

We proceed to estimate (D.4) for the specification A i (Qi)
−κi , i = o, d and κi > 0, that

features constant price elasticity equal to −1/κi. Substitution, rewriting and including

multiplicative transaction costs in the factor A i, i = o, d, as well as seller-, buyer-, and year

fixed effects, yields

ln podr tk = −κo lnQot + lnτrCodr +φo +ψd + βt + εodr tk, (D.5a)

ln podr tk = −κo
qod tk

Qot
− κd lnQd t + lnτrCodr +φo +ψd + βt + εodr tk. (D.5b)

Similar to the procedure used in deriving the regression equation for our linear model

specification, we combine both equations. This combination requires the construction of

two new variables that are defined by

R
o

od tk =

¨

ln Qot if r = 0

qod tk/Qot if r = 1,
and R

d

od tk =

¨

0 if r = 0

ln Qd t if r = 1.

The combined regression equation is:

ln podr tk = −κoR
o

od tk − κdR
d

odr tk + lnτrCodr +φo +ψd + βt + εod tk. (D.6)

Results of the estimation of this regression equation are presented in Table 5 and discussed

in Section 6.3.

17The first-order Taylor expansion of ln(1+ x) around x0 = 0 is given by ln(1+ x0) +
1

1+x0
(x − x0) = x . In

our case x = qod
Qo
·κ.
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