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Abstract

This paper studies the long-run effects of surface water scarcity in irrigated agri-
culture and the extent of adaptation. First, I estimate the long-run effects of persistent
differences in water supplies using spatial discontinuities between neighboring water
utilities in California. Then, I measure adaptation by comparing these long-run effects
with the short-run effects of weather-driven fluctuations in annual water supplies. Wa-
ter scarcity reduces crop area and crop revenue (as predicted by crop choice) in both
the short run and the long run. Differing crop substitution patterns reveal that farmers
adapt but in ways that do not offset the lost production.
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1 Introduction

Water resources worldwide face rising pressures from population growth, economic trans-
formation, and climate change. Headlines in 2021 alone showed severe drought in the
western United States, Kenya, and the Middle East, and devastating floods in Tennessee,
Germany, and central China. As precipitation patterns shift, glaciers melt, and snowpacks
shrink, the availability of surface water – the water in rivers, streams, lakes, and reservoirs
– is projected to become more variable in much of the world and to generally decline in
areas that are already dry (IPCC 2007; World Bank Group 2016). But how will rising water
scarcity affect human societies? The stakes appear high. Surface water is a critical input to
the economy – for example, 42 percent of global crop production relies on irrigation, not
only rainfall (FAO 2012) – and regulators make thousands of water allocation and invest-
ment decisions each year. So far, there is far less empirical evidence on the economic effects
of water scarcity than of other types of environmental change.

Predicting the future consequences of long-term environmental change, though, hinges
on understanding the effects specifically in the long run. Most estimates of the economic
effects of environmental variables are based on short-run responses to temporary fluctua-
tions in conditions (see Hsiang 2016 and Auffhammer 2018b for reviews). But short-run
and long-run effects can differ substantially due to adaptation: People may be able to re-
act and adjust their choices in a wider variety of ways in response to a permanent baseline
shift than to a temporary shock. In most settings, econometric challenges make it difficult to
draw conclusions about true long-run responses (Deschênes and Greenstone 2007). As the
climate changes, it remains an open question whether costly short-run effects will persist
and become equally costly long-run effects, or whether we will reduce these costs through
adaptation.

This paper studies the long-run effects of surface water scarcity, and the extent of adap-
tation, in irrigated agriculture – the sector that uses 70 percent of global water withdrawals
(FAO 2012). First, I estimate the long-run effects of persistent differences in water scarcity
on land use and agricultural production. By comparing present-day outcomes across places
with longstanding differences in water supplies, my results may be able to guide predic-
tions of the long-term effects of future changes in water supplies. Then, I measure the extent
of adaptation by comparing these long-run effects with the short-run effects of temporary
changes in surface water supplies, estimated in the same sample. In the short run, farmers
have a limited range of ability to respond, but the long-run effects reflect all the investments
farmers have made over decades or centuries of agricultural development. The difference
between these short-run and long-run effects reveals the extent of adaptation – how much
the response to water scarcity differs when it arrives as a permanent difference rather than
a temporary shock.

I estimate these effects using two distinct sources of variation in surface water allocation
in California. Here, institutional history has created a system of surface water allocation in
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which availability varies not only erratically from year to year, but also sharply and per-
sistently across geography. To estimate the long-run effects of water scarcity, I use a new
research design that overcomes prior limitations in the literature: spatial discontinuities in
average water supplies at the boundaries between neighboring water utilities. Due to quirks
of history, each water utility, often called a water district, holds an entitlement to a differ-
ent volume of surface water. As a result, farms very close to each other may have large
differences in their typical water supplies, depending on which jurisdiction they fall into.
By comparing fields within a short distance of the boundaries between adjacent districts, I
can measure the effects of different average water supplies on otherwise similar cropland.
This sharp cross-sectional comparison effectively holds location constant, allowing me to
attribute to water scarcity any differences in agricultural decisions and output across the
boundaries.

To estimate the short-run effects of water scarcity, I use year-to-year fluctuations in sur-
face water supplies that are driven by distant weather. Yearly water supplies are determined
by allocation percentages set by government agencies using algorithms that consider only
environmental conditions. Conditional on a farm’s average water supplies over time, these
allocation percentages are plausibly unrelated to other factors that would affect agricul-
tural decisions and output. Fixed effects control for average water supplies, farm-specific
unobservable factors, and common shocks to statewide water supplies or the agricultural
economy. Crucially, water supplies vary independently from local weather; my results are
insensitive to flexible weather controls.

I estimate these effects for all farmland in California between 2007 and 2018 using re-
mote sensing data that provides three billion observations of land use and crop choice. Only
remote sensing data can provide the high spatial resolution needed for a regression disconti-
nuity design, which requires precise matches between each field’s outcomes and its location
relative to water district boundaries. My basic outcome variables are binary indicators for
categories of crops and land uses. I combine this land-use data with comprehensive data on
surface water deliveries, diversions, and allocations in California, which I compiled for all
wholesale users over several decades. Assembling new data on water supplies allows me
to overcome the data limitations that have been a significant constraint to research on the
economic impacts of water scarcity.

To summarize the output value of agricultural land use, I construct a measure of gross
crop revenue as predicted by crop choice (hereafter, predicted crop revenue). Because field-
level crop revenue is unobserved, I combine field-level crop choice with aggregated crop
production data. Specifically, I assign to each field the average revenue per acre earned
by the observed crop in the same county and year. This measure captures revenue effects
that operate through either crop choice or county-level changes in yields. Crop choice is
the primary margin of response in this setting: Farmers have many crops to choose from,
water allocations are announced prior to planting dates, and under-watering is rare since
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groundwater is a widely available, though costly, substitute (English et al. 2002; Christian-
Smith et al. 2012).1

My analysis yields three key results. First, the short-run effects of surface water scarcity
are economically large. In years when farms receive less water than usual, crop area de-
clines. Farmers preserve orchards and other perennials, but they fallow land that would
otherwise be planted with high-value annual crops. Predicted crop revenue falls: a 10-
percent drop in surface water supplies reduces revenue that year by 3.6 percent.

Second, I find evidence of long-run adaptation to water scarcity. When farms experience
water scarcity as a long-term average instead of a short-term shock, they permanently retire
land instead of holding it fallow. This former cropland instead becomes grassland, which
can be used to graze livestock. Farmers further adapt by shifting toward higher-value crops
in response to long-run scarcity than they do in response to short-run scarcity. They also
may shift away from high-water crops toward low-water crops, but this evidence is weaker.

Third, adaptation does not reduce the negative impacts of water scarcity on agricultural
output. Despite observed shifts in land use, crop area and predicted crop revenue decline by
nearly as much in the long run as they do in the short run. I find that a 10-percent decrease
in average surface water supplies reduces average predicted crop revenue by 3.1 percent in
the long run – an effect 85 percent as large as the short-run effect. Long-run adaptation may
mitigate the short-run impacts on farm profits to some degree, but this adaptation does not
occur in ways that offset the impacts to agriculture’s footprint or gross revenue.

Over the next few decades, surface water supplies are projected to decline in Califor-
nia and many other parts of the world. My results imply that these declining supplies are
likely to result in substantial shifts in land use and losses to agricultural revenue. Applying
hydrological forecasts from California’s Fourth Climate Change Assessment, I estimate that
surface water scarcity due to climate change will reduce crop revenue in California by $112
million to $900 million per year, relative to what it would be otherwise. These losses are in
addition to damages resulting from extreme heat, local precipitation, and other channels of
climate change impacts, such as wildfire smoke or pest infestations. More severe droughts
are also likely to lead to larger revenue losses during individual years, which I show are not
improved through long-run experience with greater water scarcity. For example, I estimate
that crop revenue losses from drought were $3.2 billion in 2015, a year whose conditions
were historically extreme but similar to 2021.

Like all projections based on past experience, this evidence can predict future events
only so far as other factors remain constant. Policy reforms, infrastructure investments, and
technological innovation would all likely affect the path of climate impacts. For example, I
show that long-run effects are larger in more water-scarce areas, suggesting that expanded
water markets or other allocative reforms could shrink total revenue losses. Another con-

1This measure will miss any within-county changes in crop yields or quality due to under-watering, but these
margins are minor. I show in county-level data (since field-level yield data is not available) that surface water
supplies have large effects on revenue and little effect on crop yields.
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sideration is that estimates in this paper are conditional on groundwater resources. I show
indirect evidence that substitution to groundwater is an important margin of response,2 so
if continued extraction depletes aquifers, future groundwater substitution may become less
feasible and revenue losses could increase.

Two other limitations of this analysis are important to keep in mind. First, crop revenue
is not a measure of social welfare. It reflects the gross output of an important sector of the
economy, but changes in revenue will be different from changes in profits or producer sur-
plus, since expenditures covary with revenues as farmers switch crops in response to water
supplies. Data availability constrains my ability to make welfare statements. Second, my
long-run estimates may be overstated (and adaptation understated) due to general equilib-
rium effects. California produces a large share of national output for many crops, so prices
can amplify the effects of local water supplies, exaggerating cross-sectional differences. All
research designs using cross-sectional comparisons share this limitation.

One contribution of this paper is to introduce spatial discontinuities as a way to mea-
sure the long-run effects of an environmental variable affected by climate change. This
method uses arguably weaker assumptions than previous approaches in the literature. One
approach, launched by Mendelsohn et al. (1994), estimates cross-sectional relationships be-
tween climate and economic outcomes. This approach relies on a selection-on-observables
assumption, which is prone to bias from omitted variables (Deschênes and Greenstone
2007). A newer approach uses long differences to measure how locations have responded
to differential trends in climate over multiple decades (Dell et al. 2012; Burke and Emerick
2016). This approach accounts for many kinds of unobserved factors, but differential cli-
mate trends themselves might still be confounded by other spatially-varying factors.3 In
contrast, the spatial discontinuity design compares observations in the cross section, so it
measures a true long-run response, but it also uses sharp geographic variation that allows
me to cleanly isolate the influence of water supplies from other spatially-correlated factors. I
find that a selection-on-observables design can replicate the spatial discontinuity results, but
only when it both adjusts for a rich set of physical covariates and compares within matched
pairs of neighboring water districts.

This paper also provides new evidence on the economic impacts of surface water avail-
ability. While a growing literature shows that groundwater availability has large effects
on agricultural economies (Hornbeck and Keskin 2014; Sekhri 2014; Blakeslee et al. 2019;
Ryan and Sudarshan 2019; Burlig et al. 2021), empirical evidence on surface water has been
constrained by a lack of available data. Previous studies have been limited to either the
extensive margin of irrigation (Hansen et al. 2011; Ji and Cobourn 2018; Jones et al. 2019),

2I cannot directly estimate the groundwater response due to lack of data, since California does not systemat-
ically monitor groundwater pumping.

3Another approach, spatial first differences, was recently proposed by Druckenmiller and Hsiang (2018).
This approach can handle many types of place-specific unobservable factors, though it relies on a particular
assumption about their spatial gradient that may not apply in all settings.
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cross-sectional comparisons (Mendelsohn and Dinar 2003; Schlenker et al. 2007; Olen et al.
2015; Edwards and Smith 2018), or short-run variation in panel data (Xu et al. 2014; Man-
ning et al. 2017; Khan et al. 2017).4 In contrast, I provide reliable evidence of the long-run
effects of intensive-margin differences in surface water supplies, through assembly of new
data and identifying variation. I find that surface water, like groundwater, has significant
economic impacts on agriculture in both the short run and the long run.

My approach to measuring adaptation is conceptually similar to several previous studies
that estimate and compare short- and long-run effects of environmental conditions. Some of
these works estimate long-run effects using long differences (Hornbeck 2012) or lags in long
panels (Taraz 2017), while others use cross-sectional comparisons (Moore and Lobell 2014).
The contribution of my approach is to estimate the long-run effects in a regression discon-
tinuity design, which can alleviate identification concerns. Another approach to adaptation
estimates the response of economic outcomes to weather variables while allowing these re-
sponses to vary by climate (e.g., Barreca et al. 2016; Heutel et al. 2018; Carleton et al. 2018;
Auffhammer 2018a). Projections using this approach still ultimately rely on a cross-sectional
assumption, e.g., that if Minnesota were given the climate of Texas, it would respond to
weather in the same way as Texas does now.

Finally, in studying the impacts of water districts, this paper also joins a broader litera-
ture on path dependence in long-run development (Acemoglu et al. 2001; Dell 2010; Bleak-
ley and Lin 2012). A number of studies have shown that institutional arrangements in early
frontier settlement have led to persistent differences in economic development (Bleakley
and Ferrie 2015; Alston and Smith 2019; Smith 2019), including specifically in surface water
resources (Libecap 2011; Leonard and Libecap 2019). This paper is one of few to quantita-
tively study the long-run effects of local self-governing organizations that manage natural
resources. I find persistent differences in land use between neighboring water districts that
were initially endowed with different water entitlements decades ago, revealing enduring
misallocation and failure of Coasian bargaining.

2 Background

Agriculture in California relies on surface water irrigation. Virtually all agriculture in
California is irrigated, not rainfed. Though California’s agricultural regions have fertile soil
(producing 13 percent of the country’s total agricultural output by value), they receive very
little rainfall, especially during the summer growing season. Instead, growers irrigate their
land using runoff from water that originates in nearby mountain ranges as rain and snow.
Runoff from these mountains flows through rivers and streams, is temporarily stored in
reservoirs, and then is delivered to farms via canals. Half of all surface water in California

4Separate bodies of work employ agronomic, mathematical programming, or hydrological-economic opti-
mization models (e.g. Hurd et al. 2004; Medellín-Azuara et al. 2007; Connor et al. 2009) instead of econometric
or statistical models.
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is diverted for human use, and agriculture consumes 80 percent of that quantity.
Groundwater is the other major source of irrigation water, though it is costlier to indi-

vidual farmers than surface water where both are available. Of all water used for irrigation
in California, 61 percent is surface water and 39 percent is groundwater (California Depart-
ment of Water Resources, 2015a). Nearly all farmers enjoy open access to groundwater, as
rich alluvial aquifers underlie all major agricultural regions, and regulation was absent un-
til a slow reform process began in 2014. However, variable costs of pumping are generally
higher than volumetric fees charged for surface water, and fixed costs of irrigation wells can
extend into hundreds of thousands of dollars.

Surface water is distributed to farms via water districts. Most farmland in California
is organized into water districts.5 Water districts are cooperative organizations that were
established by local groups of farmers starting in the 1860s through the 1950s. Most are
incorporated as local government agencies called special districts; others are non-profit or-
ganizations or for-profit companies (Henley 1957). Water districts supply water to farmers
within their jurisdiction, by diverting water from upstream rivers or major canals and dis-
tributing it to farmers through their own smaller, local canal systems. In a long-prevailing
norm, districts divide available water evenly across the farmland within their jurisdiction,
on a per-acre basis regardless of shortage or surplus (Schlenker et al. 2007). Supplying water
is the paramount, and usually only, purpose of water districts; in some cases they produce
hydroelectric power as a byproduct of diverting water, but otherwise their purview is lim-
ited to water, often by law (Teilmann 1963).

The service areas, or jurisdictions, of water districts have well-defined and persistent
boundaries. Water districts were initially created in order to finance and construct local
canal systems, a club good that lends itself to collective action. Historical research suggests
boundaries were determined by idiosyncratic initial social groupings of farmers (Adams
1929) rather than land characteristics; they very rarely coincide with other administrative or
natural boundaries, such as counties or watersheds. Boundaries today remain bound by the
fixed infrastructure of the local canal systems.

Spatial patterns of water allocation persist over time. Surface water is assigned to water
districts according to long-term entitlements. Two basic types of entitlements exist. One
is water rights, which allow a district to divert a certain amount of water per year from
a nearby river or stream. The other is project contracts, which allow a district to receive
delivery of a certain amount of water per year from major canals operated by the federal
and state governments. These canals are part of large water projects that store and transport

5Throughout this paper, I use the term “water district” to refer to any organization that holds a water right or
project contract and provides or sells water to irrigators within a defined service area. This concept encompasses
a variety of legal designations—besides actual water districts, there are also irrigation districts, county water
agencies, water conservation and flood control districts, reclamation districts, and mutual water companies.
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water across hundreds of miles throughout the state. In California one project is run by the
state government, the State Water Project (SWP), and two projects are run by the federal
governent, the Central Valley Project (CVP) and the Lower Colorado Project.

Water rights are based on the principle of prior appropriation – they belong to the first
user that claimed the water, and they last indefinitely, so long as the water continues to be
used. Water districts claimed water rights at their time of establishment. Project contracts
were first awarded between 1930 and 1973, at the time that each branch of infrastructure was
built. Contracts last indefinitely in the Lower Colorado Project and for 30- or 40-year terms
in the CVP and SWP. Upon expiration of initial contracts, virtually all have been renewed
under the same terms. Some entitlements are held by individual farms that lie outside of
any water district, but water districts hold the majority of entitlements by volume. Within a
water district, entitlements are held by the district itself on behalf of its member farms.

The result of this history is a spatial distribution of water to farmland that has changed
little in over 40 years. Water entitlements are tied to a specific place of use; they are usually
sold together with land. Transferring water rights and project contracts from one location to
another is possible but difficult, due to regulatory hurdles and transaction costs (Regnacq et
al. 2016; Hagerty 2019).

Water supplies fluctuate from year to year. Water entitlements vary from district to dis-
trict, but actual water supplies can also vary widely from year to year for the same district. A
project contract specifies only a fixed maximum entitlement of water per year. Government
agencies assign water allocations each year using algorithms that consider only weather,
reservoir levels, and other environmental conditions. A district’s allocation in a given year
is the product of its time-invariant maximum entitlement and a year-specific allocation per-
centage. These allocation percentages are set separately for each of 13 different contract
categories, so they can differ across districts in the same year according to historical priority
order and regional differences in hydrological conditions.

Farmers have good information about water supplies before making crop planting de-
cisions. Allocation percentages are first announced in early spring, prior to the start of
the growing season; although the percentages are often revised into late spring and even
summer, revisions are generally small. In addition, allocation percentages are broadly pre-
dictable from winter precipitation and reservoir levels, which are public knowledge and
highly salient to farmers, so even the initial announcements are not a surprise.

Water allocations largely determine water supplies, but not fully. Supplies can differ
from allocations for a few reasons. First, the projects have several programs under which
districts can purchase or otherwise receive supplemental amounts of water. Second, districts
can store water in the projects’ reservoirs, banking it one year and receiving it in a later
year. Third, districts can buy or sell volumes of water with each other in a within-year spot
market.

8



3 Data

Agricultural data. For agricultural outcomes, I rely on satellite data because it provides
both precise geographic identifiers and a high spatial density of observations. No sources
of survey data offer these features, which are necessary to support a spatial regression dis-
continuity design.

All outcome variables are derived from the Cropland Data Layer (CDL), a remote sens-
ing product from the U.S. Department of Agriculture (USDA). It identifies crops at every
pixel in a 30-meter grid for the entire United States, in each year from 2007 through 2018.
California alone has 300 million pixels per year with 119 distinct land-use choices. Acreage
totals in the CDL closely agree with survey-based estimates (Wang et al. 2020). However, all
secondary satellite data products contain classification error, which can bias regression esti-
mates since it is non-classical (Alix-Garcia and Millimet 2021). To reduce noise, I aggregate
pixels to farm fields (defined as quarter quarter sections in the Public Land Survey System),
keeping the modal land use within each field.6 This leaves about 450,000 observations per
year. Aggregating to fields reduces measurement error and computational time without
losing much information, since cropping patterns closely follow field definitions.

To construct summary measures of land use, I weight observed land-use choices by per-
acre crop revenue or crop water needs. This approach projects all 119 possible choices onto
meaningful one-dimensional scales. Data limitations prevent me from studying measures
that more closely reflect social welfare; no field-level data is available on profits or land
rental rates. Land values would not allow me to compare short-run and long-run responses,
since the short-run effects of water supplies on land values are difficult to interpret without
imposing strong assumptions. Previous studies have already established that water avail-
ability positively capitalizes into farmland value (Schlenker et al. 2007; Buck et al. 2014).

Weights for crop revenue come from the County Agricultural Commissioners’ Reports,
which give total acreage, quantity harvested, and revenue for 70 crop categories in each
county and year. I construct per-acre revenue in several ways; my preferred definition uses
constant prices (multiplying yield quantity per acre by a constant average price per quantity
for each crop) to focus on changes in productivity instead of output prices. Weights for crop
water needs come from Cal-SIMETAW, the agricultural water balance model developed by
the California Department of Water Resources, for the California Water Plan Update 2018.
Model output gives applied water per acre for each of 20 crop categories, 278 geographical
regions (detailed analysis unit by county), and 36 years (1980-2015). Estimates are based on
weather and plant physiology along with expert knowledge of soils, geology, and irrigation
practices.

6Quarter quarter sections are typically 40 acres, or a square with sides 0.25 mile (400 meters) in length. For
parts of the state that were never surveyed, I create a new 200-meter grid.
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Outcome variable definitions. Throughout my analysis, I focus on 12 main outcome vari-
ables of three types:

• Land use categories. Binary variables indicating the category of observed land use:
Crops planted (any crops planted), Fallow (idle cropland, not yet converted to a non-crop
use), Grassland (unirrigated rangeland; often grazed by livestock), Natural vegetation
(all other uses, including forest, shrubland, barren land, and wetlands). These four
categories are mutually exclusive and exhaustive, summing to one.7 Occasionally I
combine grassland and natural vegetation into a single non-cropland variable.

• Crop choice categories. Pairs of binary variables that divide crops along three di-
mensions: Perennial vs. Annual crops (whether the crop requires a multi-year invest-
ment; see Table 1, Panel B); High-water vs. Low-water crops (whether required irrigation
amounts are above or below mean); and High-value vs. Low-value crops (whether aver-
age revenue per acre is above or below median). If no crop is planted, these all equal
zero.

• Summary measures. Continuous variables summarizing land use and crop choice
along two dimensions: Predicted crop revenue (per-acre revenue using time-constant
prices) and Crop water needs (required crop irrigation amounts).

I analyze the discrete variables as untransformed linear probability and the continuous vari-
ables in an inverse hyperbolic sine (arcsinh) transformation. Small changes in variables in
arcsinh can be interpreted approximately as proportional changes in the underlying vari-
able, in the same way as the natural logarithm (Bellemare and Wichman 2019). The advan-
tage of arcsinh is that it admits values of zero, which I have in both continuous variables.
To reduce the influence of extreme outliers that are likely measured incorrectly, I winsorize
water and revenue variables at the 0.5 and 99.5 percentiles.

Water supplies and allocations. I assemble the universe of surface water supplies and
allocations in California, by user, sector, and year, from 1993 through 2018. (No direct mea-
surements of groundwater extraction exist for most of California.) Surface water supplies
come from four sources: the Central Valley Project (CVP), the State Water Project (SWP), the
Lower Colorado Project, and surface water rights. Supplies from these projects are called
deliveries, and supplies from surface water rights are called diversions. Throughout the
paper, I use “supplies” to refer to the sum of deliveries and diversions.

Allocations are calculated by multiplying a baseline maximum quantity by a year-varying
allocation percentage. These allocation percentages, set according to weather and hydro-
logic conditions, are determined yearly for each of 13 separate contract types in the CVP

7Observations with development are excluded from the sample since they are likely driven by separate pro-
cesses but are highly spatially correlated, introducing noise and potentially spurious results.
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and SWP. For the CVP, allocation percentages vary across both years and contract types; for
the SWP, allocation percentages are constant across users, varying only across years. For
water rights and the Lower Colorado Project, allocation percentages are always 100 percent.

Project deliveries, maximum contract amounts, and yearly percentage allocations are as-
sembled from archives of the California Department of Water Resources (DWR) and U.S.
Bureau of Reclamation (USBR). Diversions on the basis of surface water rights are taken
from reports collected by the State Water Resources Control Board (SWRCB). This compi-
lation uses recently available data made possible by a law that required all surface water
rights holders to report their water use starting in 2010.

For water district boundaries, I combine georeferenced digital maps from the DWR, the
California Atlas, and the California Environmental Health Tracking Program. I keep one
boundary definition for each water user whose boundary includes any cropland. My final
variables are water supplies and allocations per acre, which I calculate by assuming irriga-
tion water is distributed evenly and then dividing each district’s total agricultural supplies
and allocations by its total area of cropland. To create a list of neighboring district pairs, I
identify all pairs of districts whose boundaries come within 5 km of each other. My data
includes 163 water districts, from which I identify 532 unique neighbor pairs.

To match districts across many water supply and boundary datasets, I build a large cross-
walk file that accounts for variations and errors in names as well as mergers and name
changes across time. Further details of sources, cleaning, and processing of these variables
are described in Appendix B.

Figure 1 plots average annual water allocations (per acre of cropland) by water district
across California. Large differences are apparent across districts even within the same re-
gion. These differences in water allocations between neighboring districts represent my
identifying variation in long-run water supplies.

Appendix Figure A1 plots allocation percentages over time for 12 categories of water en-
titlements (i.e., water rights and 11 project contract types). Districts holding different types
of entitlements experience different patterns of water scarcity over time. This differential
movement in allocation percentages represents my identifying variation in short-run water
supplies.

Covariates. For weather covariates, I use gridded data from Schlenker and Roberts (2009),
derived from PRISM monthly data and daily weather station observations. This gives daily
minimum and maximum temperatures and precipitation on a 4-km grid for the contiguous
United States. I follow their methods to construct the following secondary variables at the
quarter-year level: total precipitation, time spent at different temperatures, degree days, and
vapor pressure deficit (Roberts et al. 2013).

Soil characteristics are mapped at relatively high spatial resolution by the National Co-
operative Soil Survey. I use variables from tables matched to soil polygons contained in the
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Gridded Soil Survey Geographic Database (gSSURGO), provided publicly by the National
Resources Conservation Service of the USDA. Groundwater depth and quality are interpo-
lated (by kriging within year) from observation well readings collected from a variety of
sources and made public by the California Natural Resources Agency and the Groundwa-
ter Ambient Monitoring and Assessment Program of the California State Water Resources
Control Board.

Summary statistics. Summary statistics for the final merged dataset appear in Table 1.
There are 3.8 million field-year observations, of which 61 percent have crops planted. Aver-
age water supplies are 2.7 acre-feet per acre per year (or simply feet per year), and average
allocations are 79 percent of maximum volume. Variation in levels of water supplies is much
larger between districts than within districts over time, but variation in percentage terms is
similar in the two dimensions. The average acre generates $2,032 in revenue in 2009 dollars
and has 2.2 acre-feet per year of crop water needs. The most common categories of crops are
almonds and pistachios, alfalfa, grains, grapes, rice, corn, and cotton.

4 Empirical Strategy

4.1 Conceptual framework

Weather can affect a broad range of outcomes, with potentially very different effects in the
short term and the long term. In the short term, in response to a single realization of weather
variables, people, firms and other agents have limited scope to adjust their behavior. But
in the long term, with knowledge of the full distribution of weather variables, agents can
adapt, making decisions and investments that reduce negative impacts or take advantage of
positive impacts.

Similar reasoning can be applied to water availability in irrigated agriculture. If water
is only going to be scarce this year, farmers can choose to fallow some land, but it might
be costly to learn to irrigate differently or plant a new type of crop. But if water is always
scarce, then farmers are likely to have invested more in the knowledge and equipment that is
necessary to grow crops less water-intensively. In this way, long-run levels of water supplies
may have different effects on agricultural outcomes than short-run fluctuations. If these
long-run effects of typical water supplies are smaller than the short-run effects of water
supply shocks, the difference can be attributed to adaptation: the actions taken by farmers
to optimize their production to local environmental conditions.

To slightly formalize this intuition, an outcome Y can be expressed as a function Y(w, A)

of both water supplies w and adaptations A, the set of decisions and investments that can
be adjusted in the long run but not in the short run. Then the partial derivative ∂Y/∂w gives
the short-run effect, the direct effect of water supplies when adaptations cannot change.
The total derivative dY/dw gives the long-run effect, the overall effect of water supplies
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when adaptations are also able to change. Written out, this long-run effect is equal to the
direct (short-run) effect plus the indirect effect of water supplies through the channel of
adaptations:

dY
dw︸︷︷︸

long-run effect

=
∂Y
∂w︸︷︷︸

short-run effect

+
∂Y
∂A

dA
dw︸ ︷︷ ︸

adaptation effect

.

This equation clarifies that the adaptation effect is the difference between the short- and
long-run effects. This is useful because I cannot directly observe the adaptation effect, but I
can recover it by estimating the short-run and long-run effects. In my empirical implemen-
tation, the short-run effects are same-year responses to fluctuations in water supplies, and
the long-run effects are cross-sectional comparisons reflecting the steady state after decades
of adaptation to long-term average water supplies. My short-run effects do capture some
adjustments made by farmers within a year, so the adaptation effects should be viewed as
the results of additional adjustments made over time, after the first year.

The equation also holds true regardless of whether the outcome is an optimized quantity.
If Y were profit, the adaptation effect would reveal the extent of farmers’ success in reducing
their losses from water scarcity through investments over time.8 For my outcomes, which
farmers do not necessarily maximize or minimize, the adaptation effect simply reveals how
these outcomes are affected by farmers’ adaptation efforts over time. The sign may be posi-
tive or negative.

4.2 Short-run effects

My main specification regresses outcomes (for field i within district d in year t) on the natural
log of per-acre water supplies in that district in the same year:

Yidt = γ ln(WaterSupplies)dt + αid + λt + ε idt. (1)

Field fixed effects αid absorb mean water supplies, leaving γ to measure the effects of per-
centage deviations from mean water supplies. These fixed effects also control for all other
field-specific, time-invariant factors that affect the outcome. Time fixed effects λt control for
year-specific shocks to water supplies or the agricultural economy. In some specifications, I
also include local time-varying covariates Xidt, such as weather variables.

Because water districts can adjust their yearly water supplies in response to drought or
crop needs, I instrument for ln(WaterSupplies)dt with ln(WaterAllocations)dt, which dis-
tricts cannot influence. This approach ensures that the short-run effect is identified using
only the portion of the variation in water supplies that is driven by weather conditions.
For ease of interpretation, I construct WaterAllocationsdt so that it has the same units as

8By the envelope theorem, the adaptation effect is zero if the production function and input costs are smooth
and profits are truly maximized. However, this may not be true empirically.
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WaterSuppliesdt: I multiply each district’s yearly allocation percentage by its maximum wa-
ter entitlement and divide by acres of cropland. However, results are driven purely by the
yearly allocation percentage, since after a natural log transformation, maximum entitlement
and cropland area are subsumed by the fixed effects.

I cluster standard errors in two dimensions: by field, and by district-year. Clustering
by field allows for arbitrary serial correlation within the unit of observation (Bertrand et al.
2004), while clustering by district-year allows for arbitrary spatial correlation within district,
a relatively large geographic area. Because fields have no special economic significance
(farmers likely make decisions simultaneously over several fields), I weight observations by
land area so that results are more representative of aggregate effects. I refrain from including
more restrictive time effects (such as county-by-year), since these would consume most of
the useful variation in water supply fluctuations and reduce statistical power.

Identification assumptions. Three key assumptions are required to interpret results of this
regression as the causal impact of short-run water supply fluctuations on outcomes. One is
that a field’s water allocation percentage is as good as randomly assigned, conditional on
mean allocations (subsumed in the field fixed effect) and statewide water supplies (sub-
sumed in the year fixed effect). This is plausible given that these allocation percentages are
determined by government agencies using algorithms that depend only on environmental
conditions. They cannot be manipulated by farmers or water districts, and they are likely
unrelated to determinants of local water demand, since the weather conditions that matter
for allocations are separated from farms in both space (the mountains vs. the valley) and
time (the winter rainy season vs. the summer growing season).

The clearest threats to this identifying assumption are regional time-varying factors that
correlate with both water allocations and agricultural outcomes. Local precipitation and
other weather could still present a concern, so in a robustness check I control for a host of
weather variables in both the current and previous year.9 Another threat may be trends in
crop suitability that diverge across regions, due to factors such as local processing capacity
or changes in the local climate. In another robustness check I include county-specific linear
time trends, which control for any unobserved factors in each county that vary at a constant
rate over time.

The other two identifying assumptions are associated with the instrument. One is exclu-
sion: that water allocations affect agricultural outcomes only through water supplies. While
this assumption cannot be directly tested, it seems appropriate. Each year’s allocation per-
centages are determinations related specifically to water supplies in that year; they are not
used for any other regulatory decisions. The other assumption is relevance: that short-term
fluctuations in water allocations have a meaningful effect on short-term fluctuations in wa-

9Quarterly sums or means of precipitation, temperature, degree days, and vapor pressure difference for the
nearest grid point to the field.
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ter supplies. This may not be true if, for example, districts had access to a perfectly efficient
water market—but in fact allocations are fairly persistent. The binned scatter plot in Figure
A3(a) shows that allocations are highly predictive of water supplies, following a close lin-
ear relationship. The first-stage regression estimate reported in Table 2, Panel A shows that
allocations are a strong instrument. The first-stage F-statistic is well over 100, which easily
surpasses conventional rule-of-thumb thresholds.

4.3 Long-run effects

To build intuition for my long-run regression specification, first consider two neighboring
water districts d, ordered by mean water supplies, with the more water-rich district indi-
cated by a binary variable MoreWaterd. I can measure the effect of being in this district,
relative to its more water-scarce neighbor, by regressing average outcome Ȳid for field i on
this treatment indicator:

Ȳid = πMoreWaterd + α + f (DistanceBorderid) + ε id (2)

while controlling flexibly for distance to the district border and limiting the sample to ob-
servations close to the border. If I assume that mean water supplies is the only attribute
of the districts that affects Ȳid, I can find the per-unit effect of mean water supplies by di-
viding the coefficient π by the difference in mean water supplies between the two districts.
An equivalent estimator would regress Ȳid on mean log water supplies ln(WaterSupplies)d,
instrumenting ln(WaterSupplies)d with MoreWaterd.

My main specification uses not one but all 532 pairs of neighboring water districts that
can be found in California. I stack Equation 2 for all such pairs into a single regression,
pooling the coefficient of interest β but allowing all other parameters to vary by border pair
b and border segment s:

Ȳidbs = βln(WaterSupplies)d + αbs + fbs(DistanceBorderidb) + ε idbs (3)

I instrument the continuous treatment variable ln(WaterSupplies)d with the binary indica-
tor MoreWaterdb. This instrument scales the reduced-form effect (of being in the relatively
water-rich district of each pair) by the first-stage effect (the average difference in log wa-
ter supplies between water-rich and water-scarce neighbors) so that it can be interpreted in
units of water quantity. Equation 3 could also be estimated by OLS; the instrument does not
adjust for omitted variables bias, since the instrument and treatment variable are perfectly
collinear within each pair of districts. However, the IV specification also corrects for pos-
sible measurement error in ln(WaterSupplies)d and improves symmetry with the short-run
estimates, since both are instrumented.

The running variable DistanceBorderidb is the perpendicular distance to the nearest point
along the border between the pair of districts. This variable controls for one geographic di-
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mension, but not parallel distance along the border (Keele and Titiunik 2015). To ensure the
regression is comparing observations that are actually near each other in both dimensions,
border segments s split each border pair into 5-kilometer pieces.10 To handle any remaining
spatial imbalances within border segments, I include latitude and longitude as additional
running variables that enter separately for each border pair×border segment.

I limit the sample to a window of observations close to the border, using local linear
regression for the running variable (following Gelman and Imbens 2014), estimating terms
separately on each side of each border, and using triangular kernel weights (following Cat-
taneo et al. 2018). For the bandwidth of this window, I show results using a range of values,
while using 10 km as the preferred specification. This choice strikes a balance between the
goals of comparing similar land areas (which would argue for a narrow window) and pre-
serving statistical power (arguing for a wider window). Although several algorithms exist
to choose an optimal bandwidth in the basic RD setting (Imbens and Kalyanaraman 2011;
Cattaneo et al. 2018), none is yet available for a pooled spatial RD design, which involves
spatial correlation, a multidimensional running variable, and multiple stacked discontinu-
ities (Dell and Olken 2018).

To avoid capturing the effects of other types of spatial discontinuities, I define border
pairs b as unique combinations of district pair, county, and top-level soil type (defined pre-
cisely as dominant-condition soil order). These pairs ensure land is compared only within
the same county and the same broad soil type. Any district pairs whose border is coter-
minous with a county or soil order boundary are effectively eliminated; without data on
both sides of the border pair, they do not contribute to the estimate. Starting with the 532
district pairs, there are 938 district pair×county combinations, 2,079 border pairs (district
pair×county×soil order), and 6,783 border pair×border segment combinations. The main
specification thus pools nearly 7,000 simultaneous RDs.

I cluster standard errors by water district, for three reasons: (1) to allow for arbitrary
spatial correlation within district, a reasonably large area; (2) because district is the main
unit of treatment, from the standpoint of experimental design (Abadie et al. 2017); and (3)
to avoid counting the same observation multiple times when it appears in more than one
permutation of neighboring districts.

Pre-treatment continuity. A key assumption required to interpret the result of this regres-
sion as a causal effect is continuity: that all other pre-treatment factors change only smoothly,
not discontinuously, at the district boundaries. Pre-treatment factors are those that were
determined prior to the development of widespread irrigation, like climate and soil quality.
High-resolution data on these factors is readily available, thanks to decades of public invest-
ment in soil surveys. These datasets are the same ones used by farmers, scientists, and real

10A segment is defined as the 5-kilometer grid cell containing the nearest point on the district border.
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estate agents, so they likely cover all major pre-treatment factors that affect crop choice.11

Other factors relevant to agricultural land use today, such as processing plant locations or
other place-specific investments, are causally downstream of the creation of water districts.
These factors are outcomes, not threats to identification, and should be taken into account
in measuring long-run effects of water districts.

To assess the continuity assumption, I examine 22 variables drawn from weather, soil
survey, and groundwater data. Because these variables likely cover the most important de-
terminants of crop productivity and comparative advantage, they represent direct tests of
the assumption. They also provide indirect evidence for whether this assumption is plausi-
ble when extended to variables that are unmeasured or unexamined.

Figure 2 plots 12 of these variables as a function of distance to the boundary between
pairs of water districts; nine other variables are shown in Appendix Figure A2. Each pair is
arranged so that the district with greater mean water allocations appears on the right (pos-
itive distance) and the district with lesser mean water allocations is on the left (negative
distance). Fixed effects for border pair×border segment are partialed out from the vari-
ables before plotting, so the graphs show the average patterns within each individual RD
comparison. Visual inspection confirms that all variables appear roughly continuous at the
border. Appendix Table A1 confirms quantitatively that these variables are well-balanced at
the border: No variable has an RD coefficient that is greater than 5 percent of its within-pair
standard deviation, and most are smaller than 1 percent.

This evidence supports the assumption that pre-treatment factors vary continuously at
water district borders. At the same time, there appear to be systematic patterns, and mod-
erate average differences, in pre-treatment variables within water districts away from the
borders. This fact suggests that a simple cross-sectional comparison of neighbor pairs may
not be sufficient to account for pre-treatment differences, and results from the RD design are
more likely to merit a causal interpretation.

Other identification assumptions. Continuity is the main assumption required to inter-
pret each boundary effect as the causal effect of the district itself, but two more assumptions
are needed to interpret these district effects as the causal effect of mean water supplies. One
of these is relevance: that there is a significant difference in mean water supplies between
neighboring districts. If water supplies were assigned evenly across districts, there would
be no first-stage relationship between the MoreWater indicator and mean water supplies.
But large differences between neighbors do exist; relatively water-rich districts enjoy 3.0
feet of surface water per year on average, while their relatively water-scarce neighbors get

11I use current soil survey data because historical soil data is not available at high resolution. Soil charac-
teristics are highly persistent, with only limited scope for farmer decisions to influence soil quality (Raz, 2021).
Historical manipulation of soil quality in response to water supplies (as either a complement or substitute)
would lead to boundary discontinuities in the present day; the fact that these variables are instead continuous
at boundaries suggests that differential manipulation is not an important factor.
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an average of only 1.5 feet of water per year. This difference of more than double is shown
as the first-stage graph in Figure 3(a).

The other assumption is the exclusion restriction: that mean water supplies are the only
way in which districts affect agricultural production. This assumption would be violated if
districts offer other kinds of services or privileges, and if these activities are more commonly
provided by relatively water-rich districts. This is unlikely; water districts in California gen-
erally exist only to deliver surface water to farmers (and sometimes other water users). An-
other way this assumption could be violated is if mean water supplies in the observed data
are not sufficient to fully describe historical water supply patterns. In robustness checks,
I examine whether results are sensitive to including the variance of water supplies, and to
defining mean water supplies in alternative ways.

In a typical RD design, another assumption requires that people have not been able to
sort or manipulate their location relative to the cutoff or boundary. The analogous assump-
tions in my setting would be that (a) district boundaries were not drawn (and have not
changed) to selectively include or exclude land owned by people who are more or less pro-
ductive at farming, and (b) more productive farmers from water-scarce districts have not
systematically chosen to buy land on the periphery of a neighboring water-rich district.
While data is not available to directly assess these assumptions, any sorting on productivity
is likely to be minimal, since California agriculture is among the most sophisticated on the
planet and most farmers are probably operating close to the production frontier.12 More im-
portantly, all of my outcome variables are functions of observed land use, so they are purged
of any field- or farmer-specific characteristics that are reflected only in yields and not land
use choices.

A related concern is that people might move water across the boundary, leading to
mismeasurement of average water supplies. This is unlikely since each water district has
its own internal canal system, making it physically difficult to move water across district
boundaries. In addition, water districts also generally prohibit individual farmers from
transacting with external agents. However, very close to the boundary, some water could be
transferred between neighboring fields that fall in separate districts, or within a single farm
operation that straddles the boundary. To address this concern, I test the sensitivity of the
results to manipulation of water supplies near district boundaries by running “donut hole”
regressions, which exclude observations that fall within windows of various widths around
the boundary.

12The typical McCrary (2008) density test is inapplicable to this setting, since the distribution of land across
space is uniform and fixed.
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5 Short-run Results

Table 2 reports estimates of the effects of surface water supplies on agricultural outcomes
in the short run, as estimated by instrumental variables regressions of the form in Equa-
tion 1. Binned scatter plots of the corresponding reduced-form relationships are shown in
Appendix Figure A3.

5.1 Land use: Water scarcity leads to fallowing, not exit from agriculture

The simplest question to answer with land use data is whether crops are grown at all. In
Table 2, the coefficient in Panel B, column 1 is positive, indicating that water allocations
increase the probability of planting crops. The coefficient implies that a 10 percent increase
in water supplies results in an increase in the share of land being cropped of 0.48 percentage
points.

When water supplies increase cropped area, what land uses decline? The answer is
fallowed land. Water supplies decrease the share of fallow land (Panel B, column 2) but do
not affect the share of non-cropland, since the effects on both grassland (Panel B, column
3) and natural vegetation (Panel B, column 4) are both precise zeros. Evidently, short-run
shortages and surpluses lead farmers to switch cropland between cropped and fallow, with
no entry or exit from agriculture.

These shifts are statistically significant, and their size is moderate. Another way of inter-
preting the estimates is that a one-year drought that reduces water supplies by one standard
deviation (56 log points, or 33 percent) leads farmers to reduce cropped area by 2.7 percent-
age points. This change would represent a 26 percent increase in land fallowed (on a base
of 10.3 percent) but only a 4 percent decrease in land cropped (on a base of 60.6 percent).
If crop production were Leontief in surface water and no other substitution were possible,
cropped area would necessarily respond one-for-one with water supplies. The fact that the
estimated coefficient is much smaller than 1 suggests that farmers have alternative margins
of response that they prefer to fallowing.

5.2 Crop choice: Farmers fallow high-value, low-water annuals

Next, how do water allocations affect which types of crops are grown? Annual crops drive
virtually all of the crop response: the effect of short-term water supplies on annuals is very
similar to the effect on crops planted (Panel B, column 5), while perennial crops are unaf-
fected (Panel B, column 6). This makes sense, because short-run fluctuations in surface water
are by definition temporary, while investments in orchards and vineyards are long-term de-
cisions. Under rational expectations, it is not worth suddenly planting more perennials in
response to a one-year water surplus, nor is it worth ripping out valuable plants in response
to a one-year water shortage.

19



Low-water crops also drive most of the crop response: short-term water supplies do
not affect the share of high-water crops (Panel C, column 1), such as almonds and alfalfa,
but they raise the share of low-water crops (Panel C, column 2), such as cotton and wheat.
One might have expected changes in water supplies to lead farmers to switch between low-
water and high-water crops; instead, farmers appear to preserve their high-water crops and
instead switch land between low-water crops and fallowing. This pattern can be rational-
ized if high-water crops are either more profitable or have greater fixed costs of production.

High-value crops also account for most of the crop response: changes in water supplies
increase the share of high-value crops (Panel C, column 3), such as cotton and grapes, much
more than they affect the share of low-value crops (Panel C, column 4), such as alfalfa,
rice, and corn. One might have expected water shortages would lead farmers to fallow the
lowest-value crops first, but high-value crops may in fact be less profitable or have fewer
fixed costs of production.

5.3 Summary measures: Water scarcity reduces predicted crop revenue

Moving beyond coarse groupings of crops, what is the effect of short-run water supplies on
crop water needs and the overall value of crops grown? Both have a clear positive relation-
ship (Panel C, columns 5-6). Receiving additional water allocations leads farmers to make
land use decisions that require more water and earn more revenue; conversely, short-term
water shortages reduce predicted crop revenue and water needs.

Regression coefficients for these variables can be viewed as approximate elasticities. For
crop water needs, the regression estimate implies that a 10 percent increase in water supplies
results in only a 0.76 percent increase in crop water needs. This seems surprisingly small,
since the relationship is much less than one-for-one. The most likely explanation is that
farmers substitute to groundwater when they face cutbacks in surface water supplies.

For predicted crop revenue, the estimated elasticity (0.36) implies that a 10 percent in-
crease in water supplies increases predicted revenue by 3.6 percent. This is an economically
large magnitude, though it is still somewhat smaller than the one-for-one benchmark that
would be expected if farmers have no substitution ability. Recall that these summary mea-
sures are not directly observed; the predicted revenue variable simply reports the average
revenue per acre earned by the observed crop in each county and year. Therefore, this mea-
sure of crop revenue mostly reflects only the effects of water allocations that operate through
the channel of crop choice. Water allocations could also raise the field-specific yields or qual-
ity of crops, but these channels would not be captured by this variable.

5.4 Decompositions: Extensive margin drives revenue effects

How much of the overall change in predicted crop revenue can be attributed to changes in
the various land use and crop choice categories? A typical back-of-the-envelope decompo-
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sition is sensitive to choices of means and challenging to implement in this setting because
outcomes are linked (an increase in the share of one category necessarily requires a decrease
in the share of another category). Instead, I construct new measures of crop revenue using
only variation between two or three broad categories of land use. For example, for annuals
vs. perennials vs. uncropped land, each observation of an annual crop is assigned the mean
revenue across all annual crops, instead of using the crop-specific revenue.13 If the effect of
water allocations on this new measure is equal to the effect on the original predicted crop
revenue variable, it suggests that the land-use changes among the chosen categories fully
explain the main effect. If the effect on the new measure is zero, it suggests that the main
effect is driven entirely by land-use changes within the chosen categories.

Appendix Figure A4 (left side) shows the effects on these limited-variation measures of
crop revenue, scaled by the effect on the original crop revenue variable, with full regres-
sion results reported in Appendix Table A11, Panel A. Variation between cropland and non-
cropland explains none of the revenue effect—consistent with the null effects previously
estimated for non-cropland. In contrast, variation between cropped and uncropped land
explains nearly the full revenue effect. Further subdivisions of crops by life cycle, water
needs, or value contribute very little to the explanatory power of the categories. This result
suggests that movement between crops is of relatively minor importance. The extensive
margin—whether or not any crops are planted—appears to account for essentially all the
effects of short-term water allocations on predicted crop revenue.

5.5 Irrigation intensity is not a primary margin of response

Besides changing crop choice, water supplies might also affect the amount of water applied
to a crop. Reduced irrigation intensity could reduce yields or crop quality, which could then
affect actual crop revenue in ways that may not be fully reflected in my measure of predicted
crop revenue. If these channels are also present, the revenue effects of water supplies will
be underestimated.

Data is not available to directly assess the effects of within-county changes in water sup-
plies on crop revenue. However, I can use county-level variation to investigate the relative
contributions of crop choice and crop yields to crop revenue. Appendix Table A3 presents
three lines of evidence supporting the notion that revenue effects are driven by crop choice
rather than yield differences. First, revenue effects are essentially unchanged when yields
are held constant. Column 2 reports the effect of water supplies on a definition of predicted
crop revenue constructed using constant yields; the point estimate is very similar to the
baseline specification repeated in Column 1, in which yields are allowed to vary by county
and year.

Second, yields themselves are affected by only a small amount. Column 3 reports the

13To preserve spatial variation, I take means within field over time, so that whenever a field has an annual
crop, it is assigned the revenue for the typical annual crop grown on that field, not all annual crops statewide.
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effect of water supplies on the usual definition of predicted crop revenue, but interacting all
fixed effects with crop indicators. The resulting regression uses only within-crop variation,
allowing the estimate to be interpreted as an average percentage change in crop yield. The
estimated effect is less than 5 percent of the effect on overall crop revenue.

Third, the same results obtain when using only county-level variation, indicating the
small yield effects are not merely an artifact of insufficient statistical power. Columns 4-6
repeat the regressions from columns 1-3, but averaging water supplies and allocations by
county-year. Despite this artificial increase in measurement error, revenue effects remain
sizable with and without varying yields, and yield effects remain small. Column 7 confirms
that the first-stage relationship remains strong after aggregating by county.

Since crop choice effects are similar when using only county-level variation as when
using the full district-level variation, it would be reasonable to expect yield effects to also
show up in county-level data. The fact that yield effects are instead small at the county level
suggests that district- or field-level changes in yields are unlikely to be important margins of
agricultural response to water scarcity in the short run. In the long run, these other channels
are even less likely to be present, since farmers have more time to switch to crops that are
better suited to their long-term level of water availability.

5.6 Robustness checks

Weather conditions. To confirm that the estimated short-run effects are driven by surface
water allocations and not local weather conditions, Appendix Table A2 shows the results
of regressions that include a host of variables describing weather in both the current and
previous year.14 Results are very similar, supporting a causal interpretation of the short-run
regressions.

Regional trends. Appendix Table C1 reports results from regressions that include county-
specific time trends. These trends adjust for regionally-divergent trends in crop suitability
or other unobservable factors. Results are again very similar to the main specification.

Price effects. Appendix Table A4 further explores sensitivity of the results to the definition
of predicted crop revenue. My preferred variable definition (column 3, repeated from the
main results in Table 2) multiplies the average yield per acre for the observed crop (in the
same county and year) by a constant price earned by the crop on average (across all counties
and years). Allowing prices to vary across counties and years (column 1) or only across years
(column 2) might introduce omitted variables bias, but it also might capture important gains
from local comparative advantage. These effect magnitudes are slightly smaller than the
preferred definition but very similar, suggesting price effects are small.

Functional form. Another concern might be the extent to which results are sensitive to
the particular functional form of the inverse hyperbolic sine transformation. Column 6 of

14Weather variables are: total precipitation and its square, flexible parameterizations of average temperature
and degree days, and average vapor pressure difference (a measure of humidity), each per quarter.
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Appendix Table A4 shows the estimate for which the dependent variable is instead linear,
in dollars per acre. The coefficient on predicted crop revenue is again moderately large. It
implies that a 10 percent increase in water supplies results in a $23 increase in predicted
revenue. How this linear effect compares to the elasticity depends on the choice of mean: an
effect of $23 translates to 1.1 percent using the arithmetic sample mean of predicted revenue
($2,032), and 21 percent using the geometric sample mean ($111), bracketing the arcsinh
effect of 3.6 percent.

To explore sensitivity of the results to the functional form of the dependent variable, Ap-
pendix Table C2 shows regressions in which water supplies and allocations are expressed
linearly, in acre-feet per acre, instead of their natural log transformation. Results are quali-
tatively very similar to the main specification despite the change in units; whether marginal
effects are smaller or larger depends on the choice of base.15

OLS. Finally, Appendix Table C3 shows the results of regressions estimated by ordinary
least squares (OLS) instead of instrumental variables. Coefficients are smaller, illustrating
the need to use an instrument for water supplies. Water districts are likely able to acquire
additional water when their water needs and potential revenue are high, undoing some of
the negative effects of water shortages and biasing the OLS toward zero. Another potential
explanation is that allocations can be anticipated more reliably and/or further in advance
than districts’ later acquisitions, so farmers may respond more to allocations than to actual
supplies.

A limitation of this analysis is that it does not incorporate year-to-year variation in water
supplies on the basis of surface water rights (i.e. diversions). This data is unavailable,
so I assume supplies from water rights are constant over time. All identifying variation
comes from year-to-year changes in deliveries from the federal and state water projects.
In reality, rights-holders may sometimes experience unobserved shortages, which would
likely be correlated with deliveries from project contracts. To the extent that this is true,
the first-stage regression of water supplies on water allocations may be underestimated,
leading short-run estimates to be overstated.16 However, this limitation is unlikely to make
a major difference to the results, since true diversions from water rights are known to have
low year-to-year variation relative to project contracts. This is because most rights held
by water districts are more senior than the projects themselves, so water rights experience
fewer cutbacks.

15Marginal effects are smaller in terms of standard deviations: the effect of a one-standard deviation increase
in linear water supplies (0.33 ft) is 12 percent of predicted crop revenue, while the effect of a one-standard
deviation increase in the natural log of water supplies (0.56) is 20 percent of predicted crop revenue. However,
marginal effects are larger in terms of means: an elasticity of 0.36 translates to a 14 percent effect per foot of
water (using the mean of 2.65 feet), which is smaller than the linear estimate of 38 percent per foot.

16Allocations may also be mismeasured for surface water rights, and they would also be expected to be corre-
lated with allocations from project contracts. In principle, this leaves the direction of bias unsigned. In practice,
simulations (available upon request) suggest that bias away from zero is more likely and any bias toward zero
would be very small.
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6 Long-run Results

Graphs in Figure 3 plot mean outcome variables by distance to the boundary between pairs
of water districts. Like the graphs for pre-treatment variables in Figure 2, pairs are arranged
so that the district with greater mean water allocations appears on the right (positive dis-
tance) and the district with lower mean water allocations is on the left (negative distance).
Because farmland near the border is otherwise very similar, any discontinuous change in
outcomes at a distance of zero can be interpreted as the effect of being in a relatively water-
rich water district. Graph (a) gives an idea of how large the difference in water supplies is
between districts on the left and the right. At the border, mean water supplies jumps ap-
proximately 0.6 log units, implying that, for the average pair of neighboring districts, one
district has twice the annual water supplies of the other.

Table 3 reports corresponding estimates of the effects of water supplies on agricultural
outcomes in the long run, as estimated by IV-RD regressions of the form in Equation 3.
Effects are estimated separately for three RD bandwidths: 25 km, 10 km, and 5 km. Smaller
bandwidths can reduce omitted variables concerns, while larger bandwidths can reduce
noise and the influence of any spillovers among observations extremely close to the border.
I cite results for a bandwidth of 10 km, but coefficient magnitudes are broadly similar across
bandwidths.

6.1 Land use: Water scarcity turns cropland to grassland

Crop planting increases in response to greater mean water supplies (graph (a)), with a 10
percent increase in water supplies leading to a 0.5 percentage point increase in the share of
land being cropped (Panel B, column 1). Unlike a short-run shock, long-run water supplies
do not appear to affect the share of fallow land (graph (c) and Panel B, column 2). Instead,
cropped area increases at the expense of non-cropland (graph (d)), specifically grassland
(Panel B, column 3) rather than natural vegetation (Panel B, column 4). In other words, long-
run water scarcity leads farmers to take cropland permanently out of production and let it
turn to grassland. Grassland (i.e., rangeland) is a more valuable land use than fallow land,
since it can be used to graze livestock, and it likely creates positive ecological externalities.

These shifts are statistically significant and of similar magnitude to the short-run shifts
in land use. Similar amounts of land are shifted out of crops in response to both short-run
and long-run water scarcity, but in the short run this land is fallowed, while in the long run
it becomes grassland. Still, the effects are moderate and much smaller than one-for-one.

6.2 Crop choice: Response comes from low-value annual crops

Next, I examine what types of crops respond to differences in mean water supplies. Just as
in the short run, annual crops drive most of the crop response: greater mean water supplies
increases the share of annual crops (graph (e) and Panel B, column 5), while perennial crops
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appear unaffected (graph (f) and Panel B, column 6). It may be surprising that perennials
do not respond even when farmers have time to adjust long-term investments, but it may
be that orchards, vineyards, and similar crops are so profitable that they are planted in well-
suited areas regardless of surface water supplies.

The increase in cropped area appears to be shared between high-water and low-water
crops. Although discontinuities in these outcomes are less visibly obvious (graphs (g)-(h))
and more sensitive to bandwidth (Panel C, columns 1-2), the balance of the evidence sug-
gests that they respond to long-run water supplies in similar proportions. This result stands
in contrast with the short-run results, which found effects for low-water crops and not high-
water crops.

Low-value crops account for the full crop response in the long run: mean water supplies
do not affect the share of high-value crops (graph (j) and Panel C, column 3), such as field
vegetables, but it does raise the share of low-value crops (graph (k) and Panel C, column
4), such as alfalfa and rice. This result again contrasts with the short-run results, in which
high-value crops accounted for most of the crop response. This difference may be evidence
of adaptive investments: high-value crops appear to be easier to switch in response to short-
run shocks, but the low-value crops are those that change when farmers have time to make
decisions that are optimal for the long run.

6.3 Summary measures: Long-run water scarcity reduces predicted revenue

Using continuous measures to summarize effects on the full set of crops, long-run water
supplies increase total crop water needs (graph (i)) as well as the overall value of crops
grown (graph (l)). The water-needs elasticity of 0.12 (Panel C, column 5) is larger in mag-
nitude than the short-run elasticity, suggesting that crop choice may be more sensitive to
surface water supplies in the long run than in the short run.

The elasticity of predicted crop revenue with respect to mean water supplies is 0.26 to
0.38 depending on bandwidth (Panel C, column 7), implying that a 10 percent increase in
mean water supplies leads to a 3-4 percent increase in predicted revenue. Compared with
the short-run elasticity of 0.36, this response is similar or slightly smaller.

6.4 Decompositions: Extensive margin drives predicted revenue effects

I perform the same decomposition exercise for long-run effects as for short-run effects,
estimating the effects of long-run water supplies on measures of predicted crop revenue
constructed using only variation across certain land-use categories.17 Appendix Figure A4
(right side) shows these effects scaled by the effect on the original predicted crop revenue
variable, and full regression results are reported in Appendix Table A11, Panel B. Variation
between cropland and non-cropland explains about half of the revenue effect, while varia-

17To preserve spatial and temporal variation, I take means within district pair×year.
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tion between cropped and uncropped land explains more than 100 percent of the revenue
effect. The fact that these categories over-explain the revenue effect suggests that farmers
also switch to lower-value land uses within each category in response to long-run water
supplies, which is consistent with the finding that changes in cropped area are driven by
low-value crops.

Further subdivisions of crops contribute little to the explanatory power of these cate-
gories. As in the short run, this result suggests that movement between crops is of relatively
minor importance, and the extensive margin appears to account for the full effects of long-
term water supplies.

6.5 Sensitivity checks

Spatial regression discontinuities can be set up in multiple ways. To test whether results
are sensitive to particular elements of the main specification, Appendix C reports estimates
from regressions with various modifications. Specifically, these checks use a rectangular
kernel instead of a triangular one (Table C4), omit running variables in latitude and longi-
tude (Table C5), omit border segments in favor of simpler border pair fixed effects (Table
C6), use smaller border segments of 2 km instead of 5 km (Table C7), and restrict the sample
using a stricter definition of neighboring districts (Table C10). Across these specifications,
all results are very similar to the main specification. Some estimates are less precise when
using smaller border segments, but this is to be expected since stringent fixed effects are
more demanding of the data.

In this research design, IV estimation is not necessary for omitted variables bias. Ap-
pendix Table C11 shows the results from running OLS instead of IV. Most estimates are very
similar to the main specification. The one difference is that there now appears to be a fal-
lowing response and a smaller grassland response. The IV estimate may be more reliable,
since it guards against measurement error in the water supplies variable.

Finally, I can again examine whether the predicted revenue results are sensitive to the
particular way the outcome variable is constructed. Results, in Appendix Table A8, are
virtually unchanged across five different definitions of predicted revenue (columns 1-5).
Estimates for predicted crop revenue expressed linearly (column 6) are less precise, which
is unsurprising given the high skewness of the untransformed revenue variable.

6.6 Ruling out alternative explanations

Endogenously chosen district boundaries. One possible threat to a causal interpretation
of this RD design is if district borders were determined in ways that included or excluded
land based on productivity or comparative advantage. As discussed earlier, most of the
relevant factors are physical characteristics that are observable today and do not exhibit
large differences at the boundaries between neighboring districts. Still, it is possible that
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even small differences in land characteristics could lead to differences in land use. To gain
confidence that land characteristics are not driving the apparent effects of long-run water
scarcity, Appendix Table A5 includes as control variables the full set of soil, climate, and
groundwater variables listed in Appendix Table A1. Results are virtually unchanged.

Water sharing across boundaries. Another possible threat to identification is if individual
farmers move water across water district boundaries. This would tend to smooth out the
differences in water supplies between neighboring districts and lead my estimates to under-
state the true long-run effects. This kind of trading is unlikely to be widespread. First, water
districts typically operate their own systems of local canals that are not directly connected to
each other, so it would be physically difficult to transport water in this way. Second, water
districts typically forbid individual farmers from buying or selling surface water outside of
the district.

Less unlikely is that a single farm operation might straddle the border between two dis-
tricts, such that it shares water from either or both districts across multiple fields managed
together as a single operation. To explore sensitivity of the results to fields immediately
surrounding district borders, I can exclude observations that fall within close distances of
the border. Appendix Table C12 sets this “donut hole” at 0.57 km (the half diagonal of one
quarter section) and Appendix Table C13 sets it at 1.14 km (the half diagonal of one section).
Results are very similar to the main specification.

Variance of water supplies. Yet another possibility is that farmers respond more to the
variance of water supplies than the mean. If the variance is correlated with the mean, this
could be a source of omitted variables bias. Appendix Table A6 shows that results are very
similar when controlling for the standard deviation of log water supplies (in each district,
per acre, during the same sample period). I endogenize this standard deviation variable
in the same way as the mean variable, instrumenting for both using two binary variables:
the usual indicator for the district with the relatively greater mean water allocations, and
another indicator for the district with the relatively greater variance of log water allocations.

The variance of water supplies itself does not appear to affect agricultural outcomes.
Appendix Table A7 shows results from regressions in which the treatment variable is the
standard deviation of log water supplies instead of the mean. The instrument is the second
binary variable mentioned above, the indicator for the district with the relatively greater
variance of log water supplies. None of the coefficients are statistically significant using
the preferred bandwidth. The point estimates are small in magnitude: A value of 1 in the
standard deviation of log water supplies is in the 97th percentile of water districts, so the
effect on crop revenue of −0.3 implies that switching a district’s long-run water supplies
from the most secure to one of the least secure would reduce crop revenue by 30 percent, or
less than 0.1 standard deviation (and I cannot reject that the effect is zero).
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Incomplete definition of long run. How long is the long-run? Are my cross-sectional
comparisons really capturing long run adaptation? The ideal dependent variable would
be expected water supplies, which is unobserved. The likely best proxy of expectations is
recent allocations and supplies, during the same timespan as outcome data. This has the
advantage of being orthogonal to the short-run variation by construction, so they can be
estimated using the same data and be as comparable as possible. However, if patterns of
water supplies have changed over time, it is possible that measures of water supplies from
earlier years carry additional information about expectations.

To check whether results are sensitive to the timespan of water supplies measured, Ap-
pendix Table C8 shows estimates in which the water allocation instrument is defined using
pre-sample data (1993-2006 instead of 2007-2018), and Appendix Table C9 shows estimates
in which both the instrument and the water supplies treatment variable use pre-sample
data. Estimates are smaller, but I cannot reject that the predicted crop revenue effect is the
same. One interpretation is that more adaptation has taken place over time, and that this
was not a long enough time span to observe the full range of possible adaptation. Alterna-
tively, expectations may have changed over time, so this is no longer the right measure. If
so, mismeasured expectations would be expected to lead to attenuation bias.

6.7 Is the regression discontinuity necessary?

An important question in the climate impacts literature is whether cross-sectional regres-
sions can recover unbiased estimates of the causal effects of long-run environmental vari-
ables. This paper’s setting offers a unique opportunity to answer this question, since the RD
estimates presumably represent unbiased causal effects. Appendix Table A9 reports esti-
mated coefficients from regressions of each of the land use and summary outcome variables
on mean surface water supplies using several alternative research designs. All regressions
instrument for supplies with district indicators as usual, but they use different approaches
to address omitted variables bias. The right-most column repeats RD estimates from Table
3 for reference.

The results are mixed. On one hand, no single approach alone—a cubic control in two-
dimensional space (column 1), a rich set of physical covariates (column 2), county fixed
effects (column 3), or district neighbor pair fixed effects (column 4)—comes very close to
reproducing the pattern of results found by RD. On the other hand, a specification that
combines all four of these approaches (column 5) does produce results remarkably similar
to the RD; many of the point estimates are nearly identical.

This exercise suggests that it is possible, at least in some settings, for cross-sectional re-
gressions to recover unbiased causal effects of long-run environmental variables. However,
the data requirements to do so may be high—here, both rich covariates and sub-county vari-
ation in water supplies are needed to replicate the RD results. In addition, typical climate
impacts studies may suffer from greater omitted variables bias than this setting, which fea-
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tures unusually large variation in the relevant environmental variable over relatively short
distances.

7 Adaptation

7.1 Adaptation to long-run water scarcity

Comparing the effects of water availability in the short run and the long run reveals the
extent to which agriculture has adapted to water scarcity in California. Figure 4 plots the
short-run and long-run effects as estimated in the preferred specifications, along with the
adaptation effect. (These effects are listed with more numerical precision in Appendix Ta-
ble A10.) To show the effects of water scarcity—the converse of water availability—I flip
the sign of the original estimates. The adaptation effect, then, is defined as the difference
between the short-run and long-run effects. It answers the question: How does land use
change as a short-term drought becomes the new long-term average?

First, overall land use changes. Farmers reduce cropped area by a nearly equal amount
in response to both short-run and long-run scarcity. The difference is what happens to this
land. In the short run, cropland is merely fallowed, but in the long run, it becomes grassland.
Comparing these two responses, the net adaptation effect is to move fallow cropland into
permanent retirement. This shift is direct evidence of adaptive investments: transitioning
cropland to grassland is costly in the short run (since it removes the yearly option of planting
crops) but more profitable than leaving land fallow (since grassland can be used to graze
livestock and may require less maintenance).

Second, the mix of crops planted changes. The most prominent shift is away from low-
value crops (such as alfalfa, rice, and corn) and toward high-value crops (such as cotton and
grapes). There is also some evidence of a shift away from high-water crops (such as fruit and
nut orchards) toward low-water crops (such as wheat and grains), though this shift is not
statistically significant. The overall shares of annuals and perennials remain the same. Shifts
toward higher-value and lower-water crops are also evidence of adaptive investments: they
result in a greater value of production per unit of water inputs but evidently are too costly
to undertake in the short run.

Third, the overall revenue value of these changes is small. Despite evidence of adaptive
investments, little of the short-run effect of water scarcity on predicted crop revenue is miti-
gated in the long run. The elasticity of predicted crop revenue with respect to water scarcity
is −0.36 in the short run and −0.31 in the long run, implying that 85 percent of short-run
revenue effects persist into the long run. Although shifting away from cropland and to-
ward higher-value crops allows farmers to alleviate some of the immediate effects of water
scarcity, gross revenue does not recover by much. Differential land-use responses reduce
the predicted revenue elasticity by only 0.06 in the long run.
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7.2 Adaptation in sensitivity to short-run shocks

How do differences in long-run environmental conditions affect the sensitivity to short-run
shocks? This is a distinct question from the effects of long-run differences on outcome levels.
So far the literature on climate impacts has simply examined how short-run weather effects
vary with climate. Although each treatment effect is causal, the differences among them
may not be.

Because my research design has plausibly exogenous variation in both short-run and
long-run water scarcity, I can interact them to estimate the causal effect of long-run scarcity
on short-run sensitivity. Stated another way, when farmers are used to drier average condi-
tions, are they better able to handle droughts?

To answer this question, I estimate variations of Equation 1 in which I allow heterogene-
ity in the elasticity γ. Specifically, I estimate the effects of short-run shocks separately in bins
x of distance to border, while controlling for the average effect of short-run shocks for each
district pair and border segment:18

Yidtbs =
(
αbs + ∑

x
βx
)

ln(WaterAllocation)dt + αid + λt + ε idtbs. (4)

Figure 5 plots estimates of the coefficients βx, plus the overall mean effect of water al-
locations, by distance to border.19 Immediately around the border, the estimated short-run
elasticities are very similar on each side of the border. There is no evidence of a discontinu-
ity, suggesting there is no causal effect of long-run water supplies on sensitivity to short-run
water supply shocks. If anything, the short-run elasticity is larger in water-scarce districts
(left side of the graph), not smaller. This evidence is more consistent with a common concave
production function than a story in which adaptation changes the shape of the production
function. These results stand in contrast to some of the climate impacts literature, which
find that extreme temperatures are less damaging in places that are more used to them (e.g.,
Carleton et al. 2018; Heutel et al. 2018).

8 Projections and Policy

8.1 Future impacts of water scarcity due to climate change

The preceding analysis measures the effects of water scarcity in California in recent experi-
ence. These estimates can now be coupled with projections from climate models to predict

18To simplify estimation and avoid problems of many weak instruments, I estimate the reduced-form effects
of water allocations rather than the instrumented effects of water supplies.

19I estimate this in several steps using the Frisch-Waugh-Lovell theorem. (1) Partial out fixed effects αid and
λt from both Yidtbs and ln(WaterAllocation)dt; call the residuals Ỹidtbs and W̃dt. (2) Estimate the overall reduced-
form effect by regressing Ỹidtbs on W̃dt. (3) Partial out pair-specific coefficients by regressing Ỹidtbs on the vector
αbsW̃dt; call the residuals ˜̃Yidtbs and ˜̃Wdt. (4) Estimate the coefficients of interest βx by regressing ˜̃Yidtbs on
∑x βx

˜̃Wdt. (5) Add the overall effect to each βx.
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the likely economic impacts of future changes in agricultural water supplies.
Climate projections show that arid and semi-arid regions globally will experience in-

creasing water scarcity (IPCC 2007). In California, precipitation is expected to become more
volatile and drought more frequent. There is no clear consensus on the direction of mean
precipitation and runoff (Bedsworth et al. 2018), but declines are expected in the volume of
water that can be effectively stored both within and across years, since reduced snowpack
will shift runoff into the wet season when reservoirs have little spare capacity. This is likely
to result in reduced surface water supplies for agriculture, especially in dry years (Knowles
et al. 2018).

Climate impacts are more challenging to project in this context than others, because the
relationship between precipitation and water supplies is indirect. Water supplies depend
not only on total precipitation but also seasonal runoff patterns, reservoir capacity, storage
and flood control decisions, estuary conditions, and environmental regulations. Unlike the
case of temperature, the treatment variable is not directly output by climate models. Ac-
curately filling the gap would require models for both hydrology (to link precipitation to
water volumes) and allocation (to link water volumes to local supplies). Granular climate
forecasts from such models are neither available in the literature nor within the scope of the
paper.

To generate approximate climate impacts without developing new models, I rely on pub-
lished summary results of hydrological forecasts and draw water supply scenarios from
in-sample experience. First, I take projections from California’s Fourth Climate Change As-
sessment (Wang et al. 2018) for average annual exports of water from the Sacramento–San
Joaquin Delta under Representative Concentration Pathways 4.5 and 8.5. I use Delta ex-
ports because they are the available measure most directly comparable with my allocations
data, and they are highly correlated with statewide water allocations. The Assessment finds
that Delta exports will decline 8 percent in RCP 4.5 (a moderate emission scenario) and 13
percent in RCP 8.5 (a high emission scenario) by mid-century, relative to a historical base
scenario.20

Second, I find the year in my data that best matches the Delta export value for each
scenario (base, RCP 4.5, RCP 8.5).21 I find the actual water supplies from those years and

20Mid-century is defined as the 30-year period centered on 2060 (2045-2074). The base scenario is taken from
the State Water Project Delivery Capability Report 2015 (California Department of Water Resources, 2015c), which
is based on average conditions between 1922 and 2003.

21Delta export quantities are not directly observed in my data, so instead I match years using the closest
measure available, south-of-Delta all-project allocation percentages. I first predict the south-of-Delta all-project
allocation percentage under each scenario and then find the historical year that minimizes the absolute differ-
ence between predicted and actual allocation percentages. The technical appendices describing the base sce-
nario (California Department of Water Resources, 2015b) do not specify total Delta exports nor south-of-Delta
all-project allocation percentages, but they do specify a statewide SWP allocation percentage. Therefore, to pre-
dict the allocation percentage for the base scenario, I regress south-of-Delta all-project allocation percentages on
statewide SWP allocation percentages in my historical data and calculate the fitted value for the base scenario’s
SWP allocation percentage. To predict allocation percentages for the RCP scenarios, I reduce the base scenario’s
predicted allocation percentage by the reductions projected by the Fourth Climate Assessment.
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carry them forward as projected water supplies under the corresponding scenarios. Third, I
project revenue impacts for each RCP scenario by multiplying my estimated long-run elas-
ticity of revenue with respect to water supplies by revenue in the most recent year of data
(2018) and the difference in log water supplies between the RCP scenario and the base sce-
nario. Revenue impacts are estimated at the county level and summed across the state.

Moderate losses in crop revenue result from the decline in surface water supplies due to
climate change. Under RCP 4.5, crop revenue is $112 million per year lower than what it
otherwise would be, with a 95-percent confidence interval of ($23, $197) million. Under RCP
8.5, crop revenue is $900 million per year lower than otherwise, with a 95-percent confidence
interval of ($224 million, $1.6 billion). These damages are additional to the damages from
extreme heat extensively documented in the literature, highlighting the need to account for
all channels of climate change impacts.

Increasing severity of droughts will also lead to larger crop revenue losses during indi-
vidual years. To get a sense of the magnitude of these losses, I estimate the revenue loss from
water scarcity for 2015—the worst drought year in my data, but also a year with nearly iden-
tical allocation percentages as 2021. I multiply my short-run revenue elasticity by revenue
in the base scenario22 and the difference in log water supplies between 2015 and the base
scenario. I estimate that surface water scarcity from drought in 2015 reduced crop revenue
by $3.2 billion relative to what it otherwise would have been, with a 95-percent confidence
interval of ($0.8, $5.6) billion. These damages are a substantial fraction of total crop revenue
in California, $36 billion.

An important caveat here is that past experience will predict future impacts only so far
as all other factors remain constant. These factors include current water allocation policy,
the distribution of property rights, existing patterns of urban development, infrastructure
for water storage and conveyance, groundwater resources, technological innovation and
adoption, and crop prices. In the future, policy changes and institutional reforms may be
able to further alleviate the effects of water scarcity. I turn to a brief exploration of the
possible impacts of two such factors.

8.2 Role of surface water allocation policy

My estimates of long-run effects are conditional on the present distribution of surface water
supplies. How much scope is there for water reallocation to reduce the total revenue losses
of water scarcity? To help answer this question, I can look at how long-run effects of water
scarcity varies with the level of average water supplies.

Figure 6 plots long-run effects of water supplies on predicted crop revenue, by bins of
mean water supplies. The effects of additional water supplies are large in water-scarce areas

22Past drought impacts are backward-looking estimates, so I use revenue values from the base scenario. Cli-
mate impact projections are forward-looking estimates, so I use revenue values from the most recent year of
data.
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(places that receive less than 2 acre-feet per acre of surface water per year), with elasticities
of 0.4 to 0.8. Meanwhile, effects are small to zero in places that receive moderate to high
amounts of surface water on average.23 This heterogeneity suggests that water reallocation
could reduce the total revenue losses from water scarcity. If a unit of surface water were
transferred from a typical water-rich place to a typical water-scarce place, the revenue gains
from additional water in the water-scarce place would outweigh the revenue losses from
less water in the water-rich place.

Such reallocation could occur in multiple ways. One way is by fiat: relevant govern-
ment actors could reform how water rights are defined and/or renegotiate project delivery
contracts (or their future renewals). Another is through market mechanisms, which govern-
ments could facilitate by lowering transaction costs in water transfers, by clarifying prop-
erty rights, reducing regulatory barriers, or setting up a centralized marketplace (Gray et al.
2015; Hagerty 2019). However, reducing total revenue losses may not necessarily improve
welfare. The social benefits would depend on the correlation beween the impacts of water
scarcity on revenue and profits, and how this correlation varies across places with more and
less water. In addition, reallocating water may introduce social costs from negative ecologi-
cal externalities.

8.3 Interactions with groundwater management

My estimates of the impacts of surface water scarcity are inclusive of endogenous ground-
water pumping responses. Farmers may deal with receiving less surface water by pumping
more groundwater—but over the long run this can deplete groundwater stocks, raising the
cost of groundwater extraction and reducing options for handling surface water scarcity. To
predict the future impacts of surface water, it is important to consider this feedback mecha-
nism, as well as the role of groundwater management policy.24

A full account of groundwater feedbacks is beyond the scope of this paper. The relevant
model would require knowledge of (1) how surface water affects groundwater extraction,
(2) how groundwater extraction affects groundwater levels, and (3) how groundwater levels
affect groundwater extraction. The first is challenging due to data limitations, the second
due to geological complexity, and the third due to endogeneity problems. Despite these
challenges, I can use the available data to partially illuminate the role of groundwater in
adaptation to surface water scarcity and then discuss the directions of its likely future im-

23These bin-specific effects are not statistically significantly different from each other, but in an alternative
specification with a linear interaction, the coefficient is negative and significantly different from zero. Hetero-
geneity is not driven by functional form; effects here are shown as elasticities, but heterogeneity is even greater
in the effects of linear changes in mean water supplies. A ten-percent change on a base of 1 unit represents a
much smaller change in the level of water supplies than a ten-percent change on a base of 5 units, and yet this
smaller change in water supplies still yields a larger effect on predicted revenue.

24Recent papers have studied the benefits of fees or markets in groundwater in California (Ayres et al. 2021;
Bruno and Jessoe 2021; Burlig et al. 2021), but they have not focused on how groundwater policy affects surface
water decisions or vice versa.
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pacts.
Circumstantial evidence suggests that groundwater has a major role in how farmers re-

spond to surface water scarcity. The elasticity of crop water needs with respect to surface
water is 0.08 in the short run and 0.12 in the long run. The fact that both are much smaller
than 1 suggests that farmers are meeting the water needs of their crops through other meth-
ods. One possible method is reduced water application rates, via deficit irrigation in the
short run and installation of water-efficient irrigation technologies (e.g., drip or sprinkler)
in the long run. But since production functions are concave and 60 percent of all irrigated
acreage in California uses some form of efficient irrigation (U.S. Department of Agriculture
2019), water application rates alone seem unlikely to explain this large discrepancy. That
leaves groundwater irrigation as the remaining explanation.

In addition, long-run surface water scarcity appears to lead to greater groundwater de-
pletion. Appendix Figure A5 plots groundwater depths by binned distance to the border
between pairs of neighboring water districts. For this outcome it is more useful to compare
average levels on each side of the graph, despite a potentially weakened causal interpreta-
tion, than to measure a discontinuity at the border. (Spatial discontinuities in groundwater
depths are unlikely, since aquifers are connected and water does not stop at administrative
boundaries.) Excluding the relatively small number of observations in the tails, groundwa-
ter depths appear to be greater (i.e., more depleted) in districts with relatively lower surface
water supplies. This pattern does not appear to be driven only by pre-existing differences in
hydrology: comparing depths in 2007-18 to depths in 1993-06 (Figure 2, graph (k)) reveals
that groundwater levels are not only lower but also falling faster in places with less surface
water.

Groundwater feedback, then, is likely to exacerbate the future economic impacts of sur-
face water scarcity. Depleted groundwater stocks will raise the cost of future extraction,
lowering the probability that farmers will substitute to groundwater. Farmers will be more
likely to switch crops or land uses at a revenue loss.25 The questions left for future research
are the magnitudes: by how much, and by when.

Policy choices in groundwater management policy can influence this path of future im-
pacts. Groundwater levels can be raised or maintained through quantity restrictions, such
as those being considered in California under the Sustainable Groundwater Management
Act. Such quantity restrictions are likely to reduce crop revenue in the short term, but raise
it in the long term relative to a no-regulation scenario. How groundwater regulation will
alter the effects of surface water scarcity is less clear. Short-run effects of surface water may

25This last step – that declining groundwater levels will increase the magnitude of the surface water effects –
is supported by theory and suggested by prior empirical evidence. One way to substantiate this idea within my
context might be to see how the long-run effect of surface water scarcity on revenue varies with groundwater
depth. Contrary to prediction, this relationship appears to be flat. However, this result is unlikely to represent
the causal effect of groundwater depth due to cross-sectional omitted variables. The finding that surface water
has similar effects in groundwater-scarce and groundwater-rich areas does not necessarily imply that the effects
will remain constant over time as groundwater levels fall.
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not change much if regulations allow year-to-year banking and borrowing of extraction per-
mits, but they will likely be exacerbated if regulations are inflexible. Long-run effects of
surface water are likely to be directly exacerbated by quantity restrictions but ameliorated
by raised aquifer levels. The net effect is ambiguous.

How will groundwater pumping restrictions affect crop revenue? I can perform a back-
of-the-envelope estimate under a strong assumption. If one unit of groundwater is per-
fectly substitutable for one unit of surface water in the long run, then their elasticities are
equal up to a scale factor (the ratio of total groundwater to total surface water). On average,
groundwater makes up 39 percent of agricultural water use (California Department of Water
Resources, 2015a), and the preferred long-run elasticity of revenue with respect to surface
water was 0.31. The groundwater elasticity would then be 0.31 × 0.39/(1 − 0.39) = 0.20,
suggesting that a 10-percent reduction in groundwater extraction would reduce crop rev-
enue by 2 percent.

9 Conclusion

This paper provides evidence on the extent of adaptation to environmental change by esti-
mating the short- and long-run effects of surface water scarcity. I study the case of irrigated
agriculture in California, a setting that is not only economically important but also conve-
nient for causal inference. First, I find that farmers reduce cropped area in response to water
scarcity in both the short run and the long run. Effects have similar magnitudes and are con-
centrated among annual crops. Second, I find some evidence of long-run adaptation. Land
shifted out of crop production is held fallow in the short run but converted to grassland
in the long run. Over time, farmers are able to shift out of low-value crops and toward a
higher-value (and possibly less water-intensive) mix of crops. Third, I find that adaptation
does not occur in ways that slow the decline in agricultural output; the long-run elasticity
of predicted crop revenue is nearly as large as the short-run elasticity, indicating that only
about one-sixth of the short-run impacts of water scarcity are mitigated in the long run.

These results highlight the critical role of surface water in the economic impacts of cli-
mate change. My projections suggest that future water scarcity from climate change may
reduce agricultural revenue by nearly $1 billion per year in California alone – without
even considering the effects of rising temperatures, which are also projected to be large
(Bedsworth et al. 2018). Although a large share of the world’s agricultural production is
irrigated, many prior empirical studies of the effects of climate change on agriculture either
exclude regions of irrigated agriculture or account for only the extensive margin of irriga-
tion. My results show that these omissions lead to underestimates of the total effects of
climate change on the economy.

My analysis leaves open several areas for future research. My long-run effects could be
combined with more detailed hydrological and water system operations models to produce
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a more comprehensive description of the likely costs of climate-induced shifts in water sup-
ply over the next several decades. Short-run estimates seem to be a decent guide to long-run
impacts in the context of surface water scarcity in agriculture, but whether this holds true
for other channels of climate change remains unknown. Finally, groundwater resources and
policy choices will have key roles in determining the extent to which past experience be-
comes relevant to the future. Further research may be able to better identify which sorts of
policy reforms might best mitigate the impacts of water scarcity.
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Figures & Tables

Figure 1: Surface water allocation by water district in California

Mean surface water allocations
(acre-feet per acre)

0.0-1.0
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Map plots mean surface water allocations per acre of cropland by water district, 2007-2018. Water allocations
equal the sum of all surface water rights and allocations from the federal and state water projects that are held
by a district and used in agriculture. Data and water district boundaries come from a combination of sources
as described in the text. I use the term “water district” broadly to include irrigation districts, water agencies,
mutual water companies, and other organizations that deliver water to agricultural consumers within a defined
service area.
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Figure 2: Pre-treatment factors are continuous across water district borders
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Graphs plot the mean outcome within each quantile bin of distance to the border between a pair of neighboring water districts.
Each pair of districts is ordered so that the district with greater mean water allocations is on the right (positive distance).
Outcome variables are described in Table A1. Observations are farm fields (typically 40 acres) weighted by area and linked
to outcome raster data by nearest grid point. District pairs are centered before plotting in the following sense: I calculate
the mean value of the outcome within each district, subtract the midpoint of each pair’s district means, and add the grand
mean of the sample. Nonparametric trend lines are plotted separately on each side of the border using local linear regression.
Statistical tests of the cross-border differences are reported in Table A1.
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Figure 3: Long-run effects of water supplies (comparing neighboring pairs of water districts)
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Graphs plot the mean outcome within each quantile bin of distance to the border between a pair of neighboring water districts.
Each pair of districts is ordered so that the district with greater mean water allocations is on the right (positive distance).
Observations are farm fields (typically 40 acres) weighted by area; each point represents approximately 11,000 observations.
Outcomes represent means over 2007-2018 of functions of crop choice in remote sensing data; those transformed by the
natural log (ln) or the inverse hyperbolic sine (arcsinh) can be interpreted approximately as proportional changes (0.1 ≈ 10%).
District pairs are centered before plotting in the following sense: I calculate the mean value of the outcome within each district,
subtract the midpoint of each pair’s district means, and add the grand mean of the sample. Data density varies across district
pairs (the histogram is included in plot (a)), so plots are unbalanced over the support of the running variable; their global
shapes incorporate compositional effects. Nonparametric trend lines are plotted separately on each side of the border using
local linear regression. Statistical inference is left for Table 3, in which regressions are instrumented and also incorporate
pair-specific running variables.
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Figure 4: Adaptation to water scarcity

Land use shares (linear effects):

Crop shares (linear effects):
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Graphs plot the short-run, long-run, and adaptation effects of water scarcity. Short-run and long-run effects of
water scarcity are the negative of the estimated effects of water supplies from the preferred regression speci-
fications (Table 2 and Table 3 with a 10-km bandwidth). Adaptation effects are estimated by subtracting the
short-run effect from the long-run effect; they can be interpreted as the ways in which land use and crop choices
would change over time as an initial one-year water shortage turns into the “new normal” long-term average
water supplies.
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Figure 5: Effect of long-run water supplies on sensitivity to short-run water allocation
shocks
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Short-run elasticity of revenue

Graph plots estimated reduced-form elasticities of predicted crop revenue with respect to short-run water allo-
cations. Each pair of districts is ordered so that the district with greater mean water allocations is on the right
(positive distance). Estimates are binned coefficients from a regression of predicted crop revenue on the natural
log of water allocations, in which the effect of water allocations is allowed to vary by distance to border within
district pairs, parameterized as 1-km bins (Equation 4). Regressions also control for field and year fixed effects
as well as the overall effect of water allocations within each district pair×border segment; the overall mean ef-
fect of water allocations is added back to the distance bin coefficients before plotting. Gray lines plot 95-percent
confidence intervals.

Figure 6: Long-run effect heterogeneity by mean water supplies
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Graph plots estimated elasticities of predicted crop revenue with respect to long-run water supplies, by bins of
mean water supplies per year (specifically, the midpoint of mean water supplies between the two districts of
each pair). Bins have width of 1 acre-feet per acre, except for the last bin which also includes the small number
of district pairs with a mean greater than 6 acre-feet per acre. Gray bars plot 95-percent confidence intervals.
Vertical axis is clipped for readability; the standard error for the first-bin estimate is 1.8.
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Table 1: Summary statistics

Observations Mean Std. Dev. Minimum Maximum

Within-

district 

S.D.

Between-

district 

S.D.

Year 3,815,232 2012.5 3.5 2007 2018

Field area (acres) 3,815,232 34.4 11.9 0.1 79.9

Surface water

Supply (acre-feet/acre/year) 3,815,232 2.65 2.14 0.01 10.33 0.33 2.10

Allocations (acre-feet/acre/year) 3,815,232 2.79 2.41 0.01 11.15 0.38 2.79

Ln (Supply) 3,815,232 0.615 0.938 -4.490 2.335 0.562 0.669

Ln (Allocations) 3,815,232 0.522 1.238 -4.627 2.411 0.298 0.660

Allocation percentage 3,815,232 0.790 0.294 0 1

Land use

Cropped 3,815,232 0.606 0.489 0 1

Fallow 3,815,232 0.103 0.304 0 1

Grassland 3,815,232 0.159 0.365 0 1

Natural vegetation 3,815,232 0.132 0.339 0 1

Crop outcomes

Water needs (acre-feet/acre/year) 3,815,229 2.18 2.04 0.00 8.00

Revenue (2009$/acre/year) 3,460,126 2,032 3,143 0 74,586

arcsinh (Water needs) 3,815,229 1.16 1.00 0.00 2.78

arcsinh (Revenue) 3,460,126 5.40 3.80 0.00 11.91

Panel A. Summary statistics

Crop category Share

Mean water 

needs per acre 

(acre-feet)

Mean revenue 

per acre 

(2009$)

Perennial, long-term crops

Almonds, pistachios 13.5% 4.82 5,081

Grapes 6.0% 3.88 7,735

Citrus, other subtropical fruit 2.4% 3.83 6,683

Other tree fruits, nuts 3.8% 4.03 4,811

Annual & short-term crops

Alfalfa 7.7% 4.97 1,303

Grains 7.0% 1.31 622

Rice 5.9% 2.89 1,594

Corn 4.3% 2.61 868

Cotton 3.7% 3.62 1,736

Tomatoes 2.5% 2.59 4,171

Safflower 0.6% 1.99 453

Onions, garlic 0.5% 3.03 5,943

Melons, squash, cucumbers 0.3% 2.41 5,844

Sugar beets 0.2% 3.62 2,187

Dry beans 0.2% 2.12 1,215

Potatoes 0.2% 1.72 7,825

Pasture, grass 0.1% 7.58 125

Other vegetables, berries 1.0% 1.94 18,128

Other field crops 0.7% 2.67 1,036

Not crops

Grassland (unirrigated rangeland) 15.9% 0.00 11

Fallow 10.3% 0.00 0

Natural vegetation 13.2% 0.00 0

Panel B. Crop characteristics by category

Panel A reports statistics of water supplies and crop outcomes in California, using data from 2007 through 2018. Observations
are farm fields (typically 40 acres) per year. Statistics (except for the number of observations) are weighted by area; water
supplies, allocations, and revenue variables are winsorized at the 0.5 and 99.5 percentiles. Standard deviations (S.D.) within
district are the standard deviation of residuals from a regression of each variable on farm field and year fixed effects (water
quantity variables do not vary across fields within a district). Standard deviations between districts are the standard deviation
of field-level means over time. Panel B reports characteristics by crop category, with shares of overall land use. Crop categories
correspond to those in water use data; revenue data breaks these further into 70 categories of crops. The groupings of perennial
versus annual crops are meant to capture whether a crop requires a long-term (multi-year) investment; some crops listed under
annual (e.g., alfalfa, strawberries, artichokes) are technically biennials or perennials but can be harvested within a year.
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Table 2: Short-run effects of water supplies

Ln
(Surface Water Supplies)

(1)

Ln (Surface Water Allocations) 0.357
(0.032)

F-statistic 124.6
Field fixed effects 
Year effects 
Observations 3,815,232
Clusters 2,172

Panel A. First-stage effect of surface water allocations on surface water supplies

Crops 
planted

Fallowed 
land Grassland

Natural 
vegetation

Annual 
crops

Perennial 
crops

(1) (2) (3) (4) (5) (6)

Ln (Surface Water Supplies) 0.048 -0.048 -0.003 0.004 0.044 0.003
(0.019) (0.018) (0.005) (0.004) (0.018) (0.005)

Field fixed effects      
Year effects      
Observations 3,815,232 3,815,232 3,815,232 3,815,232 3,815,232 3,815,232
Clusters 2,172 2,172 2,172 2,172 2,172 2,172

(linear probability) (linear probability)

Panel B. Short-run effects of surface water supplies (instrumental variables)
Land use (categories sum to one) Crop choice

High-water Low-water High-value Low-value
Water 
needs

Crop 
revenue

(1) (2) (3) (4) (5) (6)

Ln (Surface Water Supplies) 0.006 0.042 0.039 0.009 0.076 0.362
(0.014) (0.018) (0.012) (0.010) (0.029) (0.160)

Field fixed effects      
Year effects      
Observations 3,815,232 3,815,232 3,815,232 3,815,232 3,815,229 3,459,809
Clusters 2,172 2,172 2,172 2,172 2,172 2,165

Panel C. Short-run effects of surface water supplies (instrumental variables)
Crop choice Summary measures

(linear probability) (inverse hyperbolic sine)

Table shows coefficients from regressions of the variable in each column header on the variables
listed in rows, using panel data from 2007-2018. In Panels B and C, the treatment variable (natural
log of surface water supplies) is instrumented with the natural log of water allocations. Observations
are farm fields (typically 40 acres) per year and are weighted by area. Summary measures are not
observed directly but rather predicted from remote sensing data as described in the text. Effects on
variables transformed by the inverse hyperbolic sine (arcsinh) can be interpreted approximately as
proportional changes (0.1 ≈ 10%). Standard errors are shown in parentheses and clustered both by
district-year and by field.

48



Table 3: Long-run effects of water supplies

(1) (2) (3)

0.591 0.590 0.600
(0.047) (0.051) (0.051)

Bandwidth 25 km 10 km 5 km
F-statistic 155.2 135.9 136.0
Border pair × border segment   
Distance × pair × segment   
Distance × pair × segment × More   
(Lat, Lon) × pair × segment   
Observations 1,079,977 543,541 264,828
Clusters 180 180 178

Panel A. First-stage relationship (mean difference in mean water supplies across border pairs)

Ln (Mean Surface Water Supplies)

More water-rich district of each 
pair

Crops 
planted

Fallowed 
land Grassland

Natural 
vegetation

Annual 
crops

Perennial 
crops

(1) (2) (3) (4) (5) (6)
Ln (Mean Surface Water Supplies)
     Bandwidth: 25 km 0.064 -0.010 -0.053 -0.001 0.036 0.028

(0.021) (0.015) (0.017) (0.005) (0.019) (0.020)
     Bandwidth: 10 km 0.050 -0.013 -0.038 0.001 0.042 0.009

(0.017) (0.016) (0.011) (0.005) (0.019) (0.014)
     Bandwidth: 5 km 0.042 -0.012 -0.031 0.000 0.032 0.010

(0.015) (0.015) (0.010) (0.005) (0.019) (0.013)
Border pair × border segment      
Distance × pair × segment      
Distance × pair × segment × More      
(Lat, Lon) × pair × segment      
Observations (10 km bandwidth) 543,541 543,541 543,541 543,541 543,541 543,541
Clusters 180 180 180 180 180 180

(linear probability) (linear probability)

Panel B. Long-run effects of surface water supplies (instrumental variables)
Land use (categories sum to one) Crop choice

High-water Low-water High-value Low-value
Water 
needs

Crop 
revenue

(1) (2) (3) (4) (5) (6)
Ln (Mean Surface Water Supplies)
     Bandwidth: 25 km 0.047 0.017 0.017 0.047 0.157 0.381

(0.022) (0.014) (0.022) (0.016) (0.046) (0.148)
     Bandwidth: 10 km 0.027 0.024 0.000 0.050 0.120 0.306

(0.018) (0.013) (0.018) (0.015) (0.039) (0.137)
     Bandwidth: 5 km 0.023 0.020 0.000 0.042 0.102 0.256

(0.016) (0.013) (0.017) (0.015) (0.034) (0.123)
Border pair × border segment      
Distance × pair × segment      
Distance × pair × segment × More      
(Lat, Lon) × pair × segment      
Observations (10 km bandwidth) 543,541 543,541 543,541 543,541 543,541 543,011
Clusters 180 180 180 180 180 180

(linear probability) (inverse hyperbolic sine)

Panel C. Long-run effects of surface water supplies (instrumental variables)
Crop choice Summary measures

Regressions pool spatial regression discontinuities (RDs) for 532 pairs of neighboring water districts, using data from 2007-
2018 collapsed to cross-sectional means. Data is limited to observations within the specified bandwidth of the border; esti-
mates using different bandwidths are from separate regressions. RDs include fixed effects for border pair×border segment;
border pair represents district pair×county×dominant soil order, and border segment breaks each border up into 5-km grid
cells. Running variables (distance to border, latitude, and longitude, with distance estimated separately on each side of each
border) are each interacted with these fixed effects, yielding 6,783 simultaneous RDs with a single pooled treatment coeffi-
cient. In Panels B and C, the treatment variable is instrumented with the “More” indicator for the relatively water-rich district
of each pair of neighbors, measured by mean allocations over the same period. Observations are farm fields, weighted by area
with a triangular kernel. Standard errors are shown in parentheses and clustered by district.
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A (For Online Publication) Appendix Figures and Tables

Figure A1: Surface water allocation percentages over time by type of entitlement
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Graph plots allocation percentages over time, 2007-2018, for each of 12 surface water entitlement type. Thick dark lines plot
allocations for the subtitled entitlement type; thin light lines plot the other 11 entitlement types for comparison. A value of 100
means a district is allocated 100 percent of its maximum entitlement volume, and a value of 0 means it is allocated no surface
water in that year. Entitlement types refer to classes of contracts with the federal and state water projects, or to directly-held
water rights. Allocation percentages are set according to weather and environmental conditions by the government agencies
that operate the water projects.

50



Figure A2: Continuity of additional pre-treatment factors across water district borders
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Graphs plot the mean outcome within each quantile bin of distance to the border between a pair of neighboring water districts.
Each pair of districts is ordered so that the district with greater mean water allocations is on the right (positive distance).
Outcome variables are described in Table A1. Observations are farm fields (typically 40 acres) weighted by area and linked
to outcome raster data by nearest grid point. District pairs are centered before plotting in the following sense: I calculate the
mean value within each district, subtract the midpoint of each pair’s district means, and add the grand mean of the sample.
Nonparametric trend lines are plotted separately on each side of the border using local linear regression.
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Figure A3: Short-run effects of water supplies (within water districts over time)
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Graphs plot the mean outcome within each quantile of water allocation mean deviations. Observations are farm fields (typi-
cally 40 acres) per year, weighted by area; each point represents approximately 150,000 observations. Outcome variables are
functions of crop choice in remote sensing data during 2007-2018; those transformed by the natural log (ln) or the inverse
hyperbolic sine (arcsinh) can be interpreted approximately as proportional changes (0.1 ≈ 10%). Farm field and year means
are partialed out from all variables (outcome variables as well as water allocations) before plotting, and the overall sample
mean is added back to variables expressed as shares. Resulting graphs show the relationship between year-to-year fluctua-
tions in water allocations, relative to average water allocations for that farm, and same-year anomalies in cropping decisions,
relative to that farm’s typical cropping decisions, while also controlling for year-specific changes in statewide average water
allocations and cropping decisions. Trend lines show linear regressions (and their 95 percent confidence intervals) fitted to
the underlying residuals for each graph. These regressions are identical to the first stage (plot (a)) and reduced-form (plots
(b)-(f)) relationships from an instrumental variables fixed effects regression of cropping outcomes on yearly water supplies,
instrumenting supplies with yearly water allocations.
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Figure A4: Decomposition of predicted revenue effects by categories of variation
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Graph plots estimated effects of water supplies on measures of predicted crop revenue as constructed using
only variation across specified categories of crops, as compared with the baseline estimates (in which revenue is
constructed using the full variation across crops). For example, variation in the extensive margin (of cropped vs.
uncropped) explains close to the full effect in both the short and long run, suggesting that the intensive margin
(movement between crops) is of relatively minor importance. The specified categories slightly under-explain
short-run effects (suggesting that farmers switch to higher-revenue crops within each category in response to
short-run shocks) and slightly over-explain long-run effects (suggesting that farmers switch to lower-revenue
crops within each category in response to long-run differences). Full regression results are shown in Table A11.

Figure A5: Effect of long-run water scarcity on groundwater levels
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Graphs plot the mean outcome within each quantile bin of distance to the border between a pair of neighboring water districts.
Each pair of districts is ordered so that the district with greater mean water allocations is on the right (positive distance).
Observations are farm fields (typically 40 acres) weighted by area and linked to outcome raster data by nearest grid point.
District pairs are centered before plotting in the following sense: I calculate the mean value of the outcome within each district,
subtract the midpoint of each pair’s district means, and add the grand mean of the sample. Nonparametric trend lines are
plotted separately on each side of the border using local linear regression.
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Table A1: Pre-treatment factors are well-balanced across water district boundaries

Mean

SD 

within 

pairs Diff.

p-

value

Normal-

ized 

diff. Diff.

p-

value

Normal-

ized 

diff.

Climate variables (1980-2017 means)

Precipitation, Apr-Sep (mm) 45.3 6.0 -0.44 0.18 -0.022 0.01 0.66 0.001

Precipitation, Oct-Mar (mm) 250.3 31.9 -1.81 0.29 -0.014 0.03 0.76 0.000

Mean temperature, Apr-Sep (degrees C) 22.85 0.32 0.021 0.43 0.013 -0.005 0.00 -0.003

Mean high temperature, Apr-Sep (degrees C) 31.45 0.43 0.034 0.16 0.018 -0.003 0.01 -0.002

Mean low temperature, Apr-Sep (degrees C) 14.26 0.48 0.007 0.84 0.005 -0.007 0.00 -0.004

Mean vapor pressure deficit, Apr-Sep (kPa) 3.14 0.11 0.0077 0.20 0.022 -0.0001 0.77 0.000

Harmful degree days (>29 C), Apr-Sep 203 13 1.14 0.33 0.015 -0.16 0.00 -0.002

Growing degree days (8-29 C), Apr-Sep 2526 47 2.51 0.50 0.011 -0.73 0.00 -0.003

Soil variables

National Commodity Crop Productivity Index, maximum 0.133 0.065 0.003 0.24 0.030 -0.002 0.02 -0.019

Soil organic carbon, within 150 mm (ln(g/m2)) 8.46 0.63 0.10 0.00 0.107 -0.01 0.34 -0.016

Available water storage, within 150 mm (mm) 157.8 37.2 4.17 0.03 0.090 -0.80 0.21 -0.017

Slope gradient (percent) 3.73 6.37 -1.67 0.00 -0.167 -0.13 0.01 -0.013

Root zone depth (cm) 138 25 0.81 0.34 0.027 -0.22 0.70 -0.007

Drainage is good, neither poor nor excessive (=1) 0.67 0.38 -0.068 0.01 -0.145 0.001 0.95 0.001

Flooding occurs occasionally or more frequently (=1) 0.07 0.19 0.026 0.03 0.104 0.001 0.66 0.005

Hydrologic group has low runoff potential (=1) 0.34 0.40 0.007 0.71 0.016 0.000 0.95 -0.001

Runoff class is medium to very high (=1) 0.48 0.39 -0.063 0.00 -0.127 0.005 0.43 0.011

Irrigated land capability: few to moderate crop limitations (=1) 0.55 0.44 -0.014 0.57 -0.028 -0.024 0.00 -0.049

Non-irrigated land capability: at all suitable for crops (=1) 0.43 0.26 0.042 0.00 0.086 0.002 0.64 0.004

Drought-vulnerable landscape (=1) 0.25 0.37 -0.016 0.28 -0.037 -0.005 0.54 -0.012

Groundwater variables

Groundwater depth, mean during 1993-2006 (feet) 90.6 45.9 -4.72 0.27 -0.058 0.10 0.79 0.001

Groundwater salinity, total dissolved solids (arcsinh(mg/L)) 6.53 0.15 -0.009 0.51 -0.026 0.002 0.09 0.006

Matched regression Regression discontinuity

(more vs. less water-rich neighbors)

Pairwise comparisons

Table shows average differences across borders between neighboring pairs of water districts, comparing dis-
tricts with relatively greater and lesser mean water allocations within each pair. Differences are calculated via
pairwise matched regression (i.e., a regression of each outcome on border pair fixed effects and an indicator for
the relatively water-rich district of each pair) and via regression discontinuity (of the form in Equation 3, with
a 10-km bandwidth). Differences are expressed as simple differences (i.e., the coefficient from these regressions,
along with the p-value from a test of the null that the coefficient is zero) and as normalized differences (i.e.,
the coefficient divided by the root mean square of the standard deviations of the variable on each side of the
border). Means and standard deviations are tabulated for the full regression-discontinuity sample, in which
observations may appear more than once as part of multiple border pairs. Observations are farm fields (typi-
cally 40 acres) weighted by area. Standard deviations (SD) within pairs are calculated as the standard deviation
of the residuals of the pairwise matched regression. Climate variables come from PRISM via Schlenker and
Roberts (2009); soil variables come from the SSURGO database; and groundwater variables come from state of
California data as described in the text.
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Table A2: Short-run effects of water supplies (including weather covariates)

Crops 

planted Fallow Grassland

Natural 

uses

Annual 

crops

Perennial 

crops

(1) (2) (3) (4) (5) (6)

Ln (Supply) 0.047 ** -0.046 *** -0.005 0.004 0.042 ** 0.005

(0.020) (0.018) (0.005) (0.003) (0.018) (0.006)

Weather variables ✓ ✓ ✓ ✓ ✓ ✓

Lagged weather variables ✓ ✓ ✓ ✓ ✓ ✓

Field fixed effects ✓ ✓ ✓ ✓ ✓ ✓

Year effects ✓ ✓ ✓ ✓ ✓ ✓

Observations 3,175,060 3,175,060 3,175,060 3,175,060 3,175,060 3,175,060

Clusters 1,810 1,810 1,810 1,810 1,810 1,810

Land use (categories sum to one) Crop choice

Panel A. Including weather covariates

(linear probability) (linear probability)

High-

water Low-water

High-

value Low-value

Water 

needs

Crop 

revenue

(1) (2) (3) (4) (5) (6)

Ln (Supply) -0.015 0.062 *** 0.030 ** 0.017 * 0.071 ** 0.398 **

(0.013) (0.020) (0.013) (0.010) (0.030) (0.168)

Weather variables ✓ ✓ ✓ ✓ ✓ ✓

Lagged weather variables ✓ ✓ ✓ ✓ ✓ ✓

Field fixed effects ✓ ✓ ✓ ✓ ✓ ✓

Year effects ✓ ✓ ✓ ✓ ✓ ✓

Observations 3,175,060 3,175,060 3,175,060 3,175,060 3,175,059 3,052,523

Clusters 1,810 1,810 1,810 1,810 1,810 1,810

Panel B. Including weather covariates

Crop choice Summary measures

(linear probability) (inverse hyperbolic sine)

See notes for Table 2. Weather variables include quarterly sums or means of precipitation, the square of precipi-
tation, temperature and degree days in several bins, and vapor pressure difference for the nearest grid point to
the field. Lagged weather variables are the same variables from the previous year.
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Table A3: Short-run revenue effects are driven by crop choice, not yield differences

Varying 

yields

Constant 

yields

Yields 

only

Varying 

yields

Constant 

yields

Yields 

only

(1) (2) (3) (4) (5) (6) (7)

Ln (Supply) 0.362 ** 0.375 *** 0.017 ***

(0.160) (0.144) (0.006)

Ln (Supply, county mean) 0.404 ** 0.434 * 0.032 *

(0.195) (0.250) (0.017)

Ln (Allocations, county mean) 0.656 ***

(0.036)

Yields Per county 

and year

Constant Per county 

and year

Per county 

and year

Constant Per county 

and year

Field fixed effects ✓ ✓

County fixed effects ✓ ✓ ✓

Year effects ✓ ✓ ✓ ✓ ✓

Crop-by-field fixed effects ✓

Crop-by-county fixed effects ✓

Crop-by-year fixed effects ✓ ✓

Observations 3,459,809 3,815,219 3,178,145 3,460,126 3,815,219 3,460,093 3,815,232

Clusters 2,165 2,172 2,164 28 28 28 28

First stageCrop revenue (inverse hyperbolic sine)

Ln (Supply, 

county mean)

See notes for Table 2. Predicted crop revenue is constructed as a function of remote sensing data, multiplying
field-level crop indicators by county-level vectors of yields and prices. Revenue effects reflect both crop choice
and yield margins in columns 1 and 4, only the crop choice margin in columns 2 and 4 (by holding yields
constant when constructing the variable), and only the yield margin in columns 3 and 6 (by interacting the
fixed effects with crop indicators). Regressions use district-level variation in water supplies in columns 1-3 and
county-level variation (taking means by cropland area) in columns 4-7. (Prices are constant over time in all
columns, to estimate the value of yields and exclude general equilibrium effects.) Columns 4-7 cluster standard
errors by county.

Table A4: Short-run effects of water supplies (alternative revenue definitions)

(1) (2) (3) (4) (5) (6)

Ln (Supply) 0.325 ** 0.321 ** 0.362 ** 0.285 * 0.375 *** 229.7 **

(0.161) (0.157) (0.160) (0.146) (0.144) (95.21)

Yields Per county 

and year

Per county 

and year

Per county 

and year

Per county Constant Per county 

and year

Prices Per county 

and year

Per year Constant Per year Constant Constant

Field fixed effects ✓ ✓ ✓ ✓ ✓ ✓

Year effects ✓ ✓ ✓ ✓ ✓ ✓

Observations 3,459,809 3,459,809 3,459,809 3,643,181 3,815,219 3,459,809

Clusters 2,165 2,165 2,165 2,168 2,172 2,165

(2009$/acre)(inverse hyperbolic sine)

Crop revenue

See notes for Table 2. Predicted crop revenue is constructed as a function of remote sensing data, multiplying
crop indicators by vectors of yields and prices. Columns in this table show results from different methods of
constructing these revenue measures, allowing or suppressing variation in yields and prices across counties and
years. Revenue is originally expressed in 2009$ per acre per year; when transformed by the inverse hyperbolic
sine (arcsinh) it can be interpreted approximately as proportional changes (0.1 ≈ 10%).
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Table A5: Long-run effects of water supplies (including physical covariates)

Crops 

planted Fallow Grassland

Natural 

uses

Annual 

crops

Perennial 

crops

(1) (2) (3) (4) (5) (6)

Ln (Mean Supply)

     Bandwidth: 25 km 0.066 *** -0.015 -0.051 *** 0.000 0.029 0.037 *

(0.021) (0.016) (0.017) (0.005) (0.020) (0.021)

     Bandwidth: 10 km 0.051 *** -0.016 -0.038 *** 0.002 0.039 * 0.013

(0.018) (0.016) (0.011) (0.005) (0.020) (0.015)

     Bandwidth: 5 km 0.043 *** -0.012 -0.031 *** 0.001 0.030 0.012

(0.015) (0.016) (0.009) (0.005) (0.019) (0.013)

Border pair × border segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment × More ✓ ✓ ✓ ✓ ✓ ✓

Latitude × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Longitude × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Climate covariates ✓ ✓ ✓ ✓ ✓ ✓

Soil covariates ✓ ✓ ✓ ✓ ✓ ✓

Groundwater covariates ✓ ✓ ✓ ✓ ✓ ✓

Observations (10 km bandwidth) 504,435 504,435 504,435 504,435 504,435 504,435

Clusters 176 176 176 176 176 176

Panel A. Including covariates

Land use (categories sum to one) Crop choice

(linear probability) (linear probability)

High-

water Low-water

High-

value Low-value

Water 

needs

Crop 

revenue

(1) (2) (3) (4) (5) (6)

Ln (Mean Supply)

     Bandwidth: 25 km 0.051 ** 0.015 0.025 0.041 ** 0.167 *** 0.421 ***

(0.022) (0.015) (0.023) (0.017) (0.047) (0.154)

     Bandwidth: 10 km 0.027 0.025 * 0.003 0.048 *** 0.125 *** 0.324 **

(0.019) (0.013) (0.019) (0.016) (0.040) (0.141)

     Bandwidth: 5 km 0.021 0.021 0.001 0.041 *** 0.104 *** 0.266 **

(0.016) (0.013) (0.018) (0.016) (0.035) (0.124)

Border pair × border segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment × More ✓ ✓ ✓ ✓ ✓ ✓

Latitude × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Longitude × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Climate covariates ✓ ✓ ✓ ✓ ✓ ✓

Soil covariates ✓ ✓ ✓ ✓ ✓ ✓

Groundwater covariates ✓ ✓ ✓ ✓ ✓ ✓

Observations (10 km bandwidth) 504,435 504,435 504,435 504,435 504,435 503,905

Clusters 176 176 176 176 176 176

Panel B. Including covariates

Crop choice Summary measures

(linear probability) (inverse hyperbolic sine)

See notes for Table 3. Covariates included in these estimates are the set of variables listed in Table A1.
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Table A6: Long-run effects of the mean of water supplies, controlling for its variance

Crops 
planted Fallow Grassland

Natural 
uses

Annual 
crops

Perennial 
crops

(1) (2) (3) (4) (5) (6)
Ln (Mean Supply)
     Bandwidth: 25 km 0.086 *** -0.003 -0.082 *** -0.002 0.034 0.052 *

(0.028) (0.015) (0.028) (0.006) (0.022) (0.030)
     Bandwidth: 10 km 0.059 *** -0.004 -0.056 *** 0.001 0.037 0.022

(0.021) (0.015) (0.020) (0.006) (0.024) (0.021)
     Bandwidth: 5 km 0.048 ** -0.006 -0.044 *** 0.002 0.023 0.025

(0.019) (0.014) (0.017) (0.006) (0.026) (0.020)
Std. dev. ln(Supply) over time      
Border pair × border segment      
Distance × pair × segment      
Distance × pair × segment × More      
Latitude × pair × segment      
Longitude × pair × segment      
Observations (10 km bandwidth) 543,541 543,541 543,541 543,541 543,541 543,541
Clusters 180 180 180 180 180 180

Panel A. Adjusting for variance of water supplies
Land use (categories sum to one) Crop choice

(linear probability) (linear probability)

High-
water

Low-
water

High-
value

Low-
value

Water 
needs

Crop 
revenue

(1) (2) (3) (4) (5) (6)
Ln (Mean Supply)
     Bandwidth: 25 km 0.060 ** 0.027 0.040 0.046 ** 0.202 *** 0.486 ***

(0.028) (0.017) (0.030) (0.018) (0.062) (0.183)
     Bandwidth: 10 km 0.025 0.034 ** 0.000 0.059 *** 0.131 *** 0.308 **

(0.019) (0.017) (0.020) (0.018) (0.043) (0.149)
     Bandwidth: 5 km 0.023 0.025 -0.007 0.055 *** 0.109 *** 0.248 *

(0.018) (0.018) (0.019) (0.020) (0.038) (0.136)
Std. dev. ln(Supply) over time      
Border pair × border segment      
Distance × pair × segment      
Distance × pair × segment × More      
Latitude × pair × segment      
Longitude × pair × segment      
Observations (10 km bandwidth) 543,541 543,541 543,541 543,541 543,541 543,011
Clusters 180 180 180 180 180 180

Panel B. Adjusting for variance of water supplies
Crop choice Summary measures

(linear probability) (inverse hyperbolic sine)

See notes for Table 3. The additional covariate is the standard deviation of the natural log of water supplies over
2007-2018. Both the mean and standard deviation variables are treated as endogenous variables; the instru-
ments are the “More” indicator for the district with the relatively greater mean water allocations, and a second
binary indicator for the district with the relatively greater variance of log water allocations, within each pair of
neighbors.
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Table A7: Long-run effects of the variance of water supplies

Crops 
planted Fallow Grassland

Natural 
uses

Annual 
crops

Perennial 
crops

(1) (2) (3) (4) (5) (6)
Std. dev. ln(Supply) over time
     Bandwidth: 25 km 0.100 0.059 -0.151 ** -0.008 -0.046 0.146 **

(0.069) (0.043) (0.067) (0.015) (0.053) (0.073)
     Bandwidth: 10 km -0.004 0.062 -0.061 0.002 -0.069 0.065

(0.051) (0.045) (0.039) (0.015) (0.057) (0.050)
     Bandwidth: 5 km -0.018 0.040 -0.029 0.007 -0.083 0.064

(0.050) (0.049) (0.030) (0.018) (0.064) (0.048)
Border pair × border segment      
Distance × pair × segment      
Distance × pair × segment × More      
Latitude × pair × segment      
Longitude × pair × segment      
Observations (10 km bandwidth) 543,541 543,541 543,541 543,541 543,541 543,541
Clusters 180 180 180 180 180 180

Panel A. Effects of variance of water supplies
Land use (categories sum to one) Crop choice

(linear probability) (linear probability)

High-
water

Low-
water

High-
value

Low-
value

Water 
needs

Crop 
revenue

(1) (2) (3) (4) (5) (6)
Std. dev. ln(Supply) over time
     Bandwidth: 25 km 0.047 0.054 0.146 * -0.046 0.175 0.396

(0.067) (0.043) (0.079) (0.052) (0.157) (0.459)
     Bandwidth: 10 km -0.039 0.035 -0.002 -0.002 -0.063 -0.297

(0.048) (0.041) (0.056) (0.047) (0.115) (0.398)
     Bandwidth: 5 km -0.025 0.007 -0.032 0.014 -0.075 -0.323

(0.050) (0.046) (0.055) (0.047) (0.114) (0.417)
Border pair × border segment      
Distance × pair × segment      
Distance × pair × segment × More      
Latitude × pair × segment      
Longitude × pair × segment      
Observations (10 km bandwidth) 543,541 543,541 543,541 543,541 543,541 543,011
Clusters 180 180 180 180 180 180

Panel B. Effects of variance of water supplies
Crop choice Summary measures

(linear probability) (inverse hyperbolic sine)

See notes for Table 3. In this table only, the treatment variable is the standard deviation of the natural log of
water supplies over 2007-2018 (instead of the natural log of mean water supplies over time). It is instrumented
with the “More” indicator, which here designates the district with the relatively greater variance of log water
allocations (instead of the relatively greater mean of water allocations) within each pair of neighbors.
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Table A8: Long-run effects of water supplies (alternative revenue definitions)

(1) (2) (3) (4) (5) (6)

Ln (Mean Supply)

     Bandwidth: 25 km 0.365 ** 0.378 ** 0.381 ** 0.395 *** 0.385 *** 217.8 *

(0.148) (0.148) (0.148) (0.145) (0.147) (115.2)

     Bandwidth: 10 km 0.288 ** 0.303 ** 0.306 ** 0.311 ** 0.304 ** 97.3

(0.137) (0.137) (0.137) (0.131) (0.133) (82.6)

     Bandwidth: 5 km 0.238 * 0.254 ** 0.256 ** 0.265 ** 0.261 ** 55.7

(0.123) (0.123) (0.123) (0.118) (0.119) (72.5)

Yields Per county 

and year

Per county 

and year

Per county 

and year

Per county Constant Per county 

and year

Prices Per county 

and year

Per year Constant Per year Constant Constant

Border pair × border segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment × More ✓ ✓ ✓ ✓ ✓ ✓

Latitude × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Longitude × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Observations (10 km bandwidth) 543,011 543,011 543,011 543,541 543,541 543,011

Clusters 180 180 180 180 180 180

Crop revenue

(2009$/acre)(inverse hyperbolic sine)

See notes for Table 3. Predicted crop revenue is constructed as a function of remote sensing data, multiplying
crop indicators by vectors of yields and prices. Columns in this table show results from different methods of
constructing these revenue measures, allowing or suppressing variation in yields and prices across counties and
years. Revenue is originally expressed in 2009$ per acre per year; when transformed by the inverse hyperbolic
sine (arcsinh) it can be interpreted approximately as proportional changes (0.1 ≈ 10%).
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Table A9: Alternative research designs for the long-run effects of water supplies

Dependent variable in rows (each 

cell is a separate regression)

(1) (2) (3) (4) (5) (6)

Crops planted (=1) 0.062 0.024 0.149 *** 0.097 *** 0.048 ** 0.050 ***

(0.039) (0.035) (0.048) (0.024) (0.020) (0.017)

Fallow (=1) -0.019 -0.011 -0.038 -0.011 -0.030 ** -0.013

(0.020) (0.017) (0.029) (0.014) (0.014) (0.016)

Grassland (=1) -0.018 -0.011 -0.048 -0.069 *** -0.030 * -0.038 ***

(0.032) (0.032) (0.042) (0.020) (0.016) (0.011)

Natural uses (=1) -0.024 -0.002 -0.064 ** -0.017 0.012 ** 0.001

(0.030) (0.010) (0.031) (0.010) (0.005) (0.005)

Annual crops (=1) 0.093 * 0.085 ** 0.108 0.099 *** 0.047 ** 0.042 **

(0.055) (0.040) (0.077) (0.030) (0.022) (0.019)

Perennial crops (=1) -0.031 -0.061 0.042 -0.002 0.001 0.009

(0.048) (0.046) (0.071) (0.028) (0.021) (0.014)

High-water (=1) 0.070 * 0.038 0.116 ** 0.055 ** 0.045 ** 0.027

(0.036) (0.038) (0.058) (0.023) (0.022) (0.018)

Low-water (=1) -0.009 -0.014 0.033 0.042 ** 0.003 0.024 *

(0.041) (0.034) (0.054) (0.018) (0.016) (0.013)

High-value (=1) -0.030 -0.062 0.017 0.007 -0.003 0.000

(0.044) (0.048) (0.052) (0.028) (0.025) (0.018)

Low-value (=1) 0.092 ** 0.086 ** 0.132 ** 0.090 *** 0.051 ** 0.050 ***

(0.044) (0.038) (0.056) (0.026) (0.020) (0.015)

Water needs (arcsinh) 0.156 ** 0.072 0.334 *** 0.204 *** 0.120 ** 0.120 ***

(0.077) (0.075) (0.103) (0.052) (0.046) (0.039)

Crop revenue (arcsinh) 0.377 0.058 1.073 *** 0.556 *** 0.310 ** 0.306 **

(0.284) (0.258) (0.349) (0.167) (0.151) (0.137)

Crop revenue (2009$/acre) 4.0 -224.8 492.7 236.4 152.5 97.3

(285.0) (292.4) (353.7) (150.7) (119.5) (82.6)

Latitude & longitude (2D cubic) ✓ ✓

Climate/soil/groundwater covariates ✓ ✓

County fixed effects ✓ ✓

Border pair ✓ ✓

Border pair × border segment ✓

Distance × pair × segment ✓

Distance × pair × segment × More ✓

Latitude × pair × segment ✓

Longitude × pair × segment ✓

Observations 318,136 243,516 318,136 1,338,514 1,158,233 543,541

Clusters 182 176 182 182 176 180

Matched 

regression

Regression 

discontinuity 

(10 km bw)

All previous 

controls

Cubic control 

in lat & lon

Physical 

covariates

County fixed 

effects

See notes for Table 3. Each cell reports the estimated effect of long-term mean water supplies on the dependent
variable listed in each row, using the research design listed in each column. In column 2, covariates are the set
of variables listed in Table A1. Matched regressions in Column 4 use the same border-pair indicators that form
the basis of the regression discontinuity design. Results from Table 2 are repeated in column 6 for convenience.
The number of observations differs between columns primarily because in matched-pair designs (columns 4-6),
fields that belong to districts with multiple neighbors enter the sample multiple times.
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Table A10: Adaptation to water scarcity

(estimate) (s.e.) (estimate) (s.e.) (difference) (s.e.)
Land use (categories sum to 1)

Crops planted -0.048 (0.019) ** -0.050 (0.017) *** -0.003 (0.026)
Fallow 0.048 (0.018) *** 0.013 (0.016) -0.035 (0.025)
Grassland 0.003 (0.005) 0.038 (0.011) *** 0.035 (0.013) ***
Natural vegetation -0.004 (0.004) -0.001 (0.005) 0.003 (0.006)

Crop choice
Annual crops -0.044 (0.018) ** -0.042 (0.019) ** 0.003 (0.027)
Perennial crops -0.003 (0.005) -0.009 (0.014) -0.005 (0.015)
High-water crops -0.006 (0.014) -0.027 (0.018) -0.021 (0.023)
Low-water crops -0.042 (0.018) ** -0.024 (0.013) * 0.018 (0.023)
High-value crops -0.039 (0.012) *** 0.000 (0.018) 0.039 (0.022) *
Low-value crops -0.009 (0.010) -0.050 (0.015) *** -0.042 (0.019) **

Summary measures
Water needs -0.076 (0.029) *** -0.120 (0.039) *** -0.044 (0.050)
Crop revenue -0.362 (0.160) ** -0.306 (0.137) ** 0.056 (0.218)

Adaptation effect
(from SR to LR)Long-run effectShort-run effect

Table lists the short-run, long-run, and adaptation effects of water scarcity. Short-run and long-run effects of wa-
ter scarcity are the negative of the estimated effects of water supplies from the preferred regression specifications
(Table 2 and Table 3 with a bandwidth of 10 km). Adaptation effects are estimated by subtracting the short-run
effect from the long-run effect; they can be interpreted as the ways in which land use and crop choices would
change over time as an initial one-year water shortage turns into the “new normal” long-term average water
supplies. Standard errors shown in parentheses. For the adaptation effect, standard errors are calculated for
a linear combination of the short-run and long-run effects estimated jointly in a seemingly unrelated (stacked)
regression. * p<.1, ** p<.05, *** p<.01.
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Table A11: Decomposition of revenue effects to categories of variation

Panel A. Short-run effects

(1) (2) (3) (4) (5) (6)

Ln (Supply) 0.362 ** -0.007 0.343 ** 0.342 ** 0.335 ** 0.351 **

(0.160) (0.026) (0.155) (0.155) (0.155) (0.157)

Categories of variation All crops 

(original 

estimate)

Cropland vs. 

non-

cropland

Cropped vs. 

uncropped

Annuals, 

perennials, 

uncropped

High-water, 

low-water, 

uncropped

High-value, 

low-value, 

uncropped

Field fixed effects ✓ ✓ ✓ ✓ ✓ ✓

Year effects ✓ ✓ ✓ ✓ ✓ ✓

Observations 3,459,809 3,459,809 3,459,809 3,459,809 3,459,809 3,459,809

Clusters 2,165 2,165 2,165 2,165 2,165 2,165

Crop revenue (inverse hyperbolic sine)

Panel B. Long-run effects

(1) (2) (3) (4) (5) (6)

Ln (Mean Supply)

     Bandwidth: 25 km 0.381 ** 0.198 *** 0.432 *** 0.422 *** 0.444 *** 0.409 **

(0.148) (0.065) (0.155) (0.160) (0.159) (0.160)

     Bandwidth: 10 km 0.306 ** 0.154 *** 0.352 *** 0.323 ** 0.349 ** 0.316 **

(0.137) (0.050) (0.134) (0.135) (0.137) (0.137)

     Bandwidth: 5 km 0.256 ** 0.130 *** 0.293 ** 0.277 ** 0.291 ** 0.266 **

(0.123) (0.046) (0.119) (0.118) (0.121) (0.123)

Categories of variation All crops 

(original 

estimate)

Cropland vs. 

non-cropland

Cropped vs. 

uncropped

Annuals, 

perennials, 

uncropped

High-water, 

low-water, 

uncropped

High-value, 

low-value, 

uncropped

Border pair × border segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment × More ✓ ✓ ✓ ✓ ✓ ✓

Latitude × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Longitude × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Observations (10 km bandwidth) 543,011 543,011 543,011 543,011 543,011 543,011

Clusters 180 180 180 180 180 180

Crop revenue (inverse hyperbolic sine)

Tables show regression estimates that use only variation across specified categories of crops. In the main results,
predicted crop revenue is constructed by assigning crop-specific per-acre revenue values to field-specific obser-
vations of crop choice. Results here instead collapse these crop observations to broad categories. For example,
in column 4, each observation of an annual crop is assigned the mean revenue across all annual crops, instead
of using the crop-specific revenue. To preserve spatial and temporal variation, means are taken within field in
Panel A, and within district pair×year in Panel B. For additional details, see notes for Table 2 (for Panel A) and
Table 3 (for Panel B).
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B (For Online Publication) Data Construction Appendix

B.1 Surface Water Supplies and Allocations

I assemble the universe of surface water supplies and allocations in California for all users at
the highest level of distribution. Allocations are the quantities assigned to users each year,
whereas supplies are the quantities of water actually received by water users. Supplies
come from four sources: deliveries from the Central Valley Project (CVP), the State Water
Project (SWP), and the Lower Colorado Project, and diversions on the basis of surface water
rights. Allocations are the product of maximum entitlements and allocation percentages,
where maximum entitlements are set in long-term project contracts or permanent water
rights, and allocation percentages are set by annual regulatory determinations (which can
vary by contract type). My final dataset includes three main variables: (a) maximum enti-
tlements, (b) yearly allocation percentages, and (c) actual deliveries and diversions, by user,
sector, and year. (Most entitlements are held by water districts; throughout this appendix I
use the term “user” to refer to these districts as well as some individual farms, firms, and
other entities that hold their own entitlements).

B.1.1 State Water Project (SWP)

Maximum entitlements. Maximum contract (Table A) amounts are taken from Table
B-4 of Bulletin 132-18 Appendix B, downloaded from the DWR at https://water.ca.gov/
Programs/State-Water-Project/Management/Bulletin-132. They are available by user, sec-
tor, and year from 1962 through 2018. For a time-invariant baseline amount, I choose maxi-
mum entitlements in 1990, because that is the first year all currently-existing sections of the
SWP were completed, and maximum Table A amounts were stabilized.

Allocation percentages. Percentage allocations by year and sector are available from
1970 through 2018. For 1996-2018 they are taken from published notices to SWP contrac-
tors (i.e., users holding contracts), downloaded from the DWR at https://water.ca.gov/
Programs/State-Water-Project/Management/SWP-Water-Contractors. For 1970-1995 they
are taken from Table 2-3 of the Monterey Plus Draft Environmental Impact Report, down-
loaded from http://www.water.ca.gov/environmentalservices/monterey_plus.cfm.

Deliveries. Deliveries by user, sector, and year are taken from Table B-5B of Bulletin
132-18 Appendix B, downloaded from DWR at https://water.ca.gov/Programs/State-Water-Project/
Management/Bulletin-132. They are available from 1962 through 2018 and include Table A
amounts plus nonproject, surplus, and Article 21 water deliveries.
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B.1.2 Central Valley Project (CVP)

Maximum entitlements. Maximum contract volumes are downloaded from the U.S.
Bureau of Reclamation (USBR) at https://www.usbr.gov/mp/cvp-water/water-contractors.
html. I sum contract volumes by user and sector (municipal & industrial vs. agricultural).
For three contracts that are shared among multiple users, I split maximum volumes among
the users by their ratio of average deliveries, if available, or evenly otherwise. For two ob-
servations whose municipal & industrial volume exceeds maximum contract volume, I set
municipal & industrial volume to equal maximum contract volume.

In order to calculate user-specific allocation percentages, I also sum contracts by base
vs. project supply. Base supply is contracts for delivery of water based on water rights
pre-dating the CVP, while project supply is contracts for delivery of new water made avail-
able by the CVP. Contracts in the category “South of Delta Water Rights Contracts” (ex-
change contractors) are base supply, as are contracts held by Oakdale Irrigation District,
South San Joaquin Irrigation District, and wildlife refuges. Sacramento River settlement
contractors hold both base and project supply; these amounts are downloaded from http://
baydeltaoffice.water.ca.gov/modeling/hydrology/CalSim3/documentation/ReleaseReady112917/
IndividualChapters/CS3_VolI_14_ContractsandWaterRights.pdf. All other users are project
supply. For the City of West Sacramento, base/project split is not available, so I assume its
entire contract volume is project supply. The sector split is not given for Sacramento River
settlement contractors, so I assume all are agricultural (their names and internet searches
suggest the vast majority, if not all, are indeed farm operations).

Allocation percentages. Percentage allocations by year and contract category are down-
loaded from the USBR at https://www.usbr.gov/mp/cvo/vungvari/water_allocations_historical.
pdf. They are available for each contract year (the 12 months from March of the named year
through February of following year) from 1977 to the present. Percentage allocations are
determined separately for each of 13 contract categories (North of Delta Agricultural Con-
tractors, North of Delta Urban Contractors (M&I), North of Delta Wildlife Refuges, North
of Delta Settlement Contractors/Water Rights, American River M&I Contractors, In Delta
- Contra Costa, South of Delta Agricultural Contractors, South of Delta Urban Contrac-
tors (M&I), South of Delta Wildlife Refuges, South of Delta Settlement Contractors/Water
Rights, Eastside Division Contractors, Friant - Class 1, Friant - Class 2). Some categories
are combined in earlier years; when “American River M&I Contractors” (i.e., municipal and
industrial) and “In Delta – Contra Costa” (i.e., the Contra Costa Water District, which serves
suburban areas east of the San Francisco Bay) are not specified separately, I impute the value
for “North of Delta Urban Contractors”. In addition to these, allocations are always 100% for
the Hidden and Buchanan Units of the Friant Division. For “uncontrolled season” releases
in the Friant Division in 2016 and 2018, I assume the entire available volume is destined for
Class 2 users and divided equally among them.
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For each user and year, I obtain overall allocation percentages by calculating a weighted
average across each user’s contract types, where the weights are the maximum contract
volumes.

Deliveries. Deliveries by user and month are downloaded from USBR at https://www.
usbr.gov/mp/cvo/deliv.html. They are available from 1993 to the present; deliveries for
1985-92 are also online but not yet digitized. I sum deliveries across months within both
calendar year (for consistency with other data sources) and contract year (i.e., Mar-Feb, for
consistency with allocation percentages). The difference between these year definitions is
relatively small; only 8.6% of water deliveries occur in January and February.

Sector is given in the maximum contract volume dataset. Most users are classified as
fully agricultural or fully municipal. For users that hold contracts for both sectors, I assume
deliveries are divided by sector in the same proportion as the maximum contract volume.
For delivery recipients who do not hold contracts (and therefore do not appear in the con-
tract dataset), I assign to agricultural those whose name includes one of several keywords
(farm, I.D., irrigation, land, ranch, vineyard), and to municipal those whose name includes
one of several keywords (city of, construction, golf, inc., properties, P.U.D., university). I
then assign to municipal several users known as such (La Grange W.D., Lakeside W.D., and
Los Banos Gravel) and the remainder to agricultural.

B.1.3 Lower Colorado Project

Maximum entitlements. Maximum entitlements and sector of each user are constructed
from lists of Lower Colorado River water entitlements in California, downloaded from
https://www.usbr.gov/lc/region/g4000/contracts/entitlements.html, and Appendix E of
the Final Environmental Impact Statement of 2007 for the Colorado River Interim Guidelines
for Lower Basin Shortages and Coordinated Operations for Lakes Powell and Mead, down-
loaded from https://www.usbr.gov/lc/region/programs/strategies/FEIS/index.html. Max-
imum entitlements do not appear to have changed in the last couple of decades.

Allocation percentages. Percentage allocations are all 100% because a shortage had
never been declared on the Colorado River prior to 2021.

Deliveries. Diversions by user and month are available for 2003-2018 in the annual
Colorado River Accounting and Water Use Reports for Arizona, California, and Nevada,
and for 1980-2002 in the annual Compilation of Records in Accordance with Article V. All
are downloaded from USBR at https://www.usbr.gov/lc/region/g4000/wtracct.html. Di-
versions are summed across months within calendar year. When diversions are attributed
to one user but transferred to another user, I classify them as deliveries to the receiving user.
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B.1.4 Surface Water Rights

Surface water rights are not directly measured, so I calculate average annual diversions dur-
ing 2010-14 from self-reports on file with the State Water Resources Control Board (SWRCB).
These average diversions represent the best available data on both maximum entitlements
and actual diversions for holders of surface water rights. (The SWRCB holds records of the
face value of some rights, but these have been repeatedly shown to be wildly unreliable
by researchers and journalists, and the SWRCB’s own water supply models use reported
diversions, not face values. Face values are also not available for riparian or pre-1914 appro-
priative rights.) Water rights have changed little since 1980 and are almost never curtailed,
so it is reasonable to approximate them as permanent, fixed entitlements with a 100% allo-
cation percentage.

Reporting. Users holding post-1914 appropriative rights are required to submit annual
reports of use. Riparian and pre-1914 appropriative rights were not systematically tracked
by any government agency prior to 2010. However, since 2010 these rights holders must
submit Statements of Diversion & Use, with civil penalties for noncompliance. From 2010
to 2016 this reporting requirement was once every three years; since 2016 rights holders
must report every year. This means from 2012 onward, the SWRCB had at least one report
of quantity diverted of nearly every water right claimed in California. In addition to these
regular reporting requirements, in 2015 the SWRCB required major rights-holders in the
Central Valley to report their diversions from 2014 (Informational Order WR 2015-0002-
DWR).

Although these diversion statements are self-reported, it is reasonable to treat them as
the full, legally defensible value of present water rights. This is because appropriative rights
are based on documented continuous beneficial use, and these statements are public infor-
mation, so they could be used in future legal disputes. Therefore, users have incentives to
neither report less than they would like to use in the future nor more than other evidence
would support.

Data. All of SWRCB’s records – water right permits, licenses, and Statements of Di-
version & Use – are publicly available in the SWRCB’s Electronic Water Rights Informa-
tion Management System (eWRIMS). Prior to November 2021, the online eWRIMS interface
made it difficult to view or download details for many records at once. Instead, I use a
full extraction of the eWRIMS database as of February 26, 2015 that was posted online as
an exhibit in a 2016 administrative civil liability hearing for the Byron-Bethany Irrigation
District. This was downloaded from http://www.waterboards.ca.gov/waterrights/water_
issues/programs/hearings/byron_bethany/docs/exhibits/pt/wr70.csv. This dataset con-
tains records of all water rights in the state and includes reported diversions for 2010 through
2013. It also indicates the face value of rights (for post-1914 rights), types of beneficial uses,
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year of first diversion, and latitude & longitude of the point of diversion (POD).
I supplement this file with another dataset that contains reported diversions in 2014. This

dataset, the 2015 Informational Order Demand Dataset, was developed by SWRCB for a wa-
ter availability analysis in 2015 and posted online. It was downloaded from: https://www.
waterboards.ca.gov/waterrights/water_issues/programs/drought/analysis/docs/info_order_
demand.xlsx.

Cleaning. I follow the data cleaning and quality control procedures described by SWRCB
in another exhibit (“Exhibit WR-11: Testimony of Jeffrey Yeazell”, http://www.waterboards.
ca.gov/waterrights/water_issues/programs/hearings/byron_bethany/docs/exhibits/pt/
wr11.pdf), adding a number of further checks and corrections. I drop rights that are can-
celed, inactive, removed, or revoked, and those not yet active, and minor types of water
rights (such as stock ponds and livestock), leaving only appropriative rights and statements
of diversion and use.

The dataset has 95,535 observations at the level of right by point of diversion (POD)
by beneficial use type, with a few duplicates. I drop duplicate observations so that the
combination of these three variables form a unique key, then I reshape to the level of right
by point of diversion, resulting in a dataset of 56,508 observations. For rights with multiple
PODs, I keep only one so that a right is a unique record. SWRCB chooses the POD by
alphabetical order on watershed name; I instead choose the POD from the watershed, source
within watershed, and 12-digit hydrologic unit within source with the most PODs for that
right; if there duplicates within 12-digit hydrologic unit, I keep the POD with the earliest
number.

To construct the year a right first began, I use the year of first use when available (nearly
all pre-1914 and riparian rights holders, and some post-1914 rights holders), followed by
original permit issue date when available, license original issue date when available, and
record status year when available. To construct the year a right ended, I take the first year a
right was canceled, closed, inactive, rejected, or revoked.

I remove non-consumptive diversions by power-only and aquaculture-only, following
SWRCB procedure. For rights that report no diversion to storage, I set diversions to zero.
For diversions that do report diversion to storage, I subtract the amount used from the
amount diverted, censoring negative values at zero.

I correct for over-reporting following SWRCB procedure. For post-1914 rights, most
observations include the face value of the rights, so if reported diversions in a year exceed
the face value, I scale down that year’s monthly reports so their total equals the face value.
For pre-1914 and riparian rights, face value is not available but some report irrigated acres,
so if reported diversions exceed 8 acre-feet per acre, I scale down that year’s monthly reports
so their total equals this limit. I add one more correction not performed by SWRCB: For
post-1914 rights for which the face value is unavailable but irrigated acres is available, I
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apply the same acres-based correction, but conservatively only for observations whose total
diversions exceed 80 acre-feet per acre.

I make further corrections to high outliers in a process not separately conducted by
SWRCB. Many of these are likely errors in unit selection; there may also be low outliers,
but I cannot detect them effectively. I calculate the standard deviation of the natural log of
all monthly diversion values. For observations for which this standard deviation is greater
than 2 and the average annual diversion exceeds the face value of the rights by more than 100
acre-feet, for years in which the total diversion exceed the smallest annual total by more than
100 times, I scale down each monthly value proportionally so that that year’s total equals
the smallest annual total. Although this correction process affects only 82 observations, it
changes the total statewide reported diversions by more than 12 orders of magnitude. I also
drop one riparian right held by an individual that implausibly reports an annual diversion
of more than 100,000 acre-feet.

Further sample restrictions. I drop water held by federal and state projects, which are
accounted for in separate datasets. I drop non-consumptive rights: those whose beneficial
use is aesthetic, aquaculture, fish & wildlife, incidental power, power, recreational, or snow-
making; several known environmental or recreational users (California Department of Fish
& Wildlife; California Department of Forestry & Fire Prevention; California Department of
Parks & Recreation; Nature Conservancy; Pine Mountain Lake Association; Tuscany Re-
search; U.S. Bureau of Land Management; U.S. National Park Service; U.S. Forest Service;
U.S. Department of Fish & Wildlife; White Mallard, Inc.; Woody’s on the River, LLC); two
known electricity-generating users (Pacific Gas & Electric Co., Southern California Edison
Company); and those whose name includes one of several keywords (duck club, gun club,
power, preservation, shooting club, waterfowl, wetlands). I drop a small number of rights
(151) whose point of diversion is unknown.

Sector. I categorize each right as agricultural if its record lists irrigation or stockwa-
tering as a beneficial use, and municipal & industrial otherwise. I then set to municipal all
users whose names include “city of” or “golf”, and several users in Orange County found to
be municipal in internet searches (Irvine Ranch W.D., Orange County W.D., Santa Margarita
W.D., Serrano W.D.).

Final variables. For each right, I average across reported annual diversions from 2010
through 2014. I then sum across rights within user and sector, keeping location information
for the point of diversion with the largest volume. Finally, CVP settlement and exchange
contractors likely have the same rights reported in both CVP and rights datasets. So as
not to double-count these, I subtract the maximum contract volume for base supply from
diversion volumes.
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B.1.5 Reallocation of subcontracts

Several water districts that hold especially large water entitlements function as pass-through
entities for other, smaller water districts. The wholesale district receives water from the
project and allocates it to its member districts on the basis of long-term contracts. For dis-
tricts like these that I can identify and obtain information about, I reallocate entitlement and
delivery volumes to their members.

For the Kern County Water Agency, I reallocate volumes to 15 member units based on the
table found at http://www.wakc.com/wp-content/uploads/2016/01/SWP-Contracts-in-Kern-County.
pdf. I assume that deliveries are passed through in proportion to each member agency’s
contract amount, within sector.

For the Joint Water Districts Board, I reallocate volumes to 4 member units based on
information found in the 2015 Agricultural Water Management Plans, downloaded from
https://wuedata.water.ca.gov/awmp_plans. A 1969 agreement allocates the surface water
rights held by the the Board in the following proportions: 24 percent to the Butte Water Dis-
trict, 29 percent to the Biggs West Gridley Water District, 27 percent to the Richvale Irrigation
District, and 20 percent to the Sutter Extension Water District.

For the Kings River Water Association, I reallocate volumes to 16 member districts listed
in the Kings River Handbook, downloaded from http://www.centralvalleywater.org/wp-content/
uploads/2017/12/Kings_River_Handbook_2009.pdf. A total of 28 districts are listed in this
document, but 10 have no further information either on the internet or in other datasets,
and 2 do not use Kings River water. The remaining 16 members are: Alta Irrigation Dis-
trict, Clark’s Fork Reclamation District, Consolidated Irrigation District, Corcoran Irrigation
Company, Empire West Side Irrigation District, Fresno Irrigation District, James Irrigation
District, John Heinlen Mutual Water Company, Kings River Water District, Laguna Irriga-
tion District, Lemoore Canal & Irrigation Company, Liberty Canal Company a.k.a. Liberty
Water District, Reed Ditch Company a.k.a. Murphy Slough Association, Riverdale Irriga-
tion District, Stinson Canal and Irrigation Company a.k.a. Stinson Water District, Stratford
Irrigation District, Tranquillity Irrigation District, and Tulare Lake Basin Water Storage Dis-
trict. Data on allocations among these members is unavailable, so I assume volumes are
allocated evenly on a per-acre basis, using calculations of cropland area within the service
area boundaries of each member district.

B.1.6 Combined dataset

I combine the four sources above to create a full user-by-year dataset of water supplies and
allocations. I merge all sources on name and year, matching users via the crosswalk file
(see Section B.2), and sum supplies and maximum entitlements across sources. I restrict to
years beginning in 1981, when data is available from all four sources, and ending in 2018.
The result is a nearly balanced panel of 7,188 users over 38 years, for a total of 273,144
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observations.

B.1.7 Geolocations

I attach geographical location information to the data for nearly all users. When possible, I
use centroids from the district boundary file (see Section B.3). For users not available in the
district boundary file, I attach the point of diversion listed in the rights dataset. (Note the
point of diversion may be different from the place of use, which is unobserved.) For users
not available in either the user location file or rights dataset, I merge to a dataset of 65 man-
ually geolocated users. For these users, I generate coordinates based on addresses, towns,
or maps found via user websites and other publicly available documents. Only remaining
15 users could not be geolocated; they account for less than 0.01% of statewide entitlement
volume.

B.2 User crosswalk file

I create a crosswalk dataset that links water users by name across all other datasets used
in this paper. To create it, I export raw names from each dataset and append them to-
gether. I strip punctuation and correct misspellings and other typos. I standardize common
terms into acronyms (e.g., I.D. for irrigation district; M.W.C. for mutual water company;
F.C.W.C.D. for flood control and water conservation district). For names of individual peo-
ple, I match full names to entries with the same last name but only first initial(s) available.
For agencies, when names are closely but not precisely similar I use agency websites and
other publicly available documents to determine whether (a) one agency has changed its
name, (b) one name is erroneous, or (c) they are indeed distinct agencies. I use footnotes
and notes in original data sources to link users with name changes over time, keeping the
most recent name. When a merger has occurred, I roll users up into the most aggregate
version to maintain consistent definitions. The exception is companies with service in mul-
tiple noncontiguous locations, for which I treat each location as a separate user. The final
crosswalk file has 28,765 entries (input names) pointing to 14,830 targets (output names).
Excluding transactions data, the file has 17,738 entries and 13,912 targets.

B.3 District boundaries

By combining all the relevant and publicly available georeferenced digital maps I can find,
I create a dataset of the most accurate locations, areas, and boundaries for as many water
users as possible. I combine the following datasets and link them via the crosswalk file. For
each user, I keep one shape (feature) according to the following priority order:

1. DWR’s Water Districts Boundaries, downloaded via the Query link found at https:
//gis.water.ca.gov/arcgis/rest/services/Boundaries/WaterDistricts/FeatureServer.
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2. Federal, State, and Private Water Districts shapefiles maintained by USBR and DWR,
downloaded from the California Atlas at http://www.atlas.ca.gov/download.html.

3. Mojave Water Agency Water Companies, downloaded at https://www.mojavewater.
org/geospatial-library.html.

4. California Environmental Health Tracking Program’s Water Boundary Tool, down-
loaded at http://www.cehtp.org/page/water/download.

Before I append (merge) sources, I combine noncontiguous shapes for the same user (dis-
solve to create multipart features). After selecting one shape per user, I calculate the user’s
centroid (restricted to within shape), area, and cropland area (via zonal statistics). Cropland
area comes from the 2015 cropland mask from the USDA’s Cropland Data Layer.

B.4 Spatial unit of analysis

My spatial unit of analysis for the treatment variables, water supplies and allocations, is
the intersection of district boundaries with each other and also with planning areas, a
unit of analysis designed for water management by the DWR. I refer to the resulting poly-
gon areas as zones. The reason I use zones instead of districts is to more accurately esti-
mate per-acre water supplies, given that (a) multiple districts sometimes overlap, and (b)
the actual place of use is unobserved for water users for which district boundaries are
unavailable. Shapefiles for planning areas were downloaded in 2015 from DWR’s web-
page for the California Water Plan Update 2013; as of 2019 they were no longer available
on the DWR website, but they remain available from the State of California Geoportal,
http://portal.gis.ca.gov/geoportal/.

I calculate zone-by-year surface water supplies and allocations as follows. For water
users appearing in the district boundaries dataset, I calculate agricultural-sector volumes
per acre of cropland for each of water supplies, maximum entitlements, and allocation vol-
umes (i.e., maximum entitlements times allocation percentages). For water users without
available polygons, only the point of diversion is known, which is a noisy proxy for place
of use. Therefore, I aggregate the volumes of these users to planning areas, an intermediate
choice of geography, and again calculate agricultural-sector volumes per acre of cropland.
Aggregation to finer spatial units results in noisy and nonsensical values due to the im-
precise locations, while aggregation to coarser units gives up accuracy. Planning areas are
preferable to watersheds (i.e., hydrological units defined by the U.S. Geological Survey) be-
cause watershed boundaries split at rivers, whereas points of diversion are located along
rivers and may have places of use on either side of the river. Finally, for each zone, I sum
per-acre volumes across its planning area and all districts that it belongs to (one or more if
overlapping).

I restrict analysis to only areas that belong to one or more districts, since farms not served
by any water district may be different in unobserved ways.
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B.5 Structure of cross-boundary comparisons

To create a list of neighboring zone pairs for the stacked regression discontinuity analysis,
I first drop extremely small zones with an area less than 10 km2, and then generate a table
of pairs of zones whose borders fall within 5 km of each other. I use this 5-km cutoff to
define neighbors rather than a more restrictive 0-km definition because zone boundaries
rarely coincide precisely; often there is a road, river, or other obstacle in between, but they
are still neighbors for practical purposes.

I keep only zone pairs for which the constituent districts are completely distinct. Some
pairs of neighboring zones comprise parts of the same district belonging to different plan-
ning areas, but differences across planning area boundaries are artifacts of the aggregation
process above. Other neighboring pairs comprise one part of a district that is overlapped
by a second district, and another part that is not; in these cases it is uncertain whether the
districts are fully independent since one may supply water to the other. I drop both types of
pairs, restricting identifying variation to the more reliable cross-border differences that arise
from comparing fully independent districts. I also drop fields within the Grasslands Water
District, which only serves only wildlife refuges, not agricultural land.

To calculate the running variable (distance to border), I find all zones that fall within 50
km of each field’s centroid, and calculate the distance between the centroid and the nearest
point on the boundary of each nearby zone. Then, because this measure double-counts dis-
tances between fields when comparing between zones that do not directly touch, I subtract
half the minimum distance between the field’s own zone and the nearby comparison zone.

B.6 Grassland classification

The Cropland Data Layer (CDL) data is unable to distinguish between irrigated pasture and
non-irrigated rangeland. Both are assigned the same land-use code, but the distinction can
matter, as both average revenue and water needs differ between pasture and rangeland.
Instead, I reclassify grassland values based on aggregate data from the County Agricultural
Commissioners’ Reports. First, I calculate for each county the ratio of irrigated pasture area
(from the Commissioners’ Reports) to grassland area (in the CDL). (Pasture area is only
available for 2008 and 2009, so this is a cross-sectional analysis.) Then, I treat this ratio
as the probability that a given observation of grassland is irrigated pasture: all grassland
observations in a county are assigned to (irrigated) pasure if the ratio is greater than 0.5
or to (non-irrigated) rangeland if the ratio is less than 0.5. (Most counties have a ratio less
than 0.01. Only two counties have a ratio greater than 0.5: Alpine and Imperial.) Since
all comparisons are within county, treating all grassland observations the same way within
each county ensures that no results are driven by differing classification choices.
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C (For Online Publication) Supplemental Appendix Tables

Table C1: Short-run effects of water supplies (including county-specific time trends)

Crops 

planted Fallow Grassland

Natural 

uses

Annual 

crops

Perennial 

crops

(1) (2) (3) (4) (5) (6)

Ln (Supply) 0.047 *** -0.045 *** -0.005 0.002 0.037 ** 0.010 **

(0.018) (0.017) (0.005) (0.003) (0.016) (0.005)

Field fixed effects ✓ ✓ ✓ ✓ ✓ ✓

Year effects ✓ ✓ ✓ ✓ ✓ ✓

Time trend × county ✓ ✓ ✓ ✓ ✓ ✓

Observations 3,815,232 3,815,232 3,815,232 3,815,232 3,815,232 3,815,232

Clusters 2,172 2,172 2,172 2,172 2,172 2,172

(linear probability) (linear probability)

Panel A. Including county-specific time trends

Land use (categories sum to one) Crop choice

High-

water Low-water

High-

value Low-value

Water 

needs

Crop 

revenue

(1) (2) (3) (4) (5) (6)

Ln (Supply) 0.009 0.038 ** 0.041 *** 0.006 0.078 *** 0.334 **

(0.014) (0.017) (0.012) (0.009) (0.028) (0.153)

Field fixed effects ✓ ✓ ✓ ✓ ✓ ✓

Year effects ✓ ✓ ✓ ✓ ✓ ✓

Time trend × county ✓ ✓ ✓ ✓ ✓ ✓

Observations 3,815,232 3,815,232 3,815,232 3,815,232 3,815,229 3,459,809

Clusters 2,172 2,172 2,172 2,172 2,172 2,165

Panel B. Including county-specific time trends

Crop choice Summary measures

(inverse hyperbolic sine)(linear probability)

See notes for Table 2. In this table, regressions include a linear slope in year interacted with county indicators.
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Table C2: Short-run effects of water supplies (with linear treatment variable and instrument)

Crops 

planted Fallow Grassland

Natural 

uses

Annual 

crops

Perennial 

crops

(1) (2) (3) (4) (5) (6)

Supply (acre-feet per acre) 0.047 *** -0.039 *** -0.006 -0.002 0.036 *** 0.012 **

(0.010) (0.010) (0.005) (0.004) (0.011) (0.006)

Field fixed effects ✓ ✓ ✓ ✓ ✓ ✓

Year effects ✓ ✓ ✓ ✓ ✓ ✓

Observations 3,815,232 3,815,232 3,815,232 3,815,232 3,815,232 3,815,232

Clusters 2,172 2,172 2,172 2,172 2,172 2,172

(linear probability) (linear probability)

Panel A. Linear treatment variable and instrument

Land use (categories sum to one) Crop choice

High-

water Low-water

High-

value Low-value

Water 

needs

Crop 

revenue

(1) (2) (3) (4) (5) (6)

Supply (acre-feet per acre) -0.010 0.058 *** 0.026 *** 0.022 *** 0.083 *** 0.375 ***

(0.010) (0.014) (0.009) (0.007) (0.017) (0.091)

Field fixed effects ✓ ✓ ✓ ✓ ✓ ✓

Year effects ✓ ✓ ✓ ✓ ✓ ✓

Observations 3,815,232 3,815,232 3,815,232 3,815,232 3,815,229 3,459,809

Clusters 2,172 2,172 2,172 2,172 2,172 2,165

Panel B. Linear treatment variable and instrument

Crop choice Summary measures

(linear probability) (inverse hyperbolic sine)

See notes for Table 2. In this table, the instrument (water allocations) and the treatment variable (water supplies)
are expressed in acre-feet per acre, instead of their natural log transformation.
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Table C3: Short-run effects of water supplies (OLS regressions)

Crops 

planted Fallow Grassland

Natural 

uses

Annual 

crops

Perennial 

crops

(1) (2) (3) (4) (5) (6)

Ln (Supply) 0.019 * -0.022 ** 0.000 0.003 0.021 ** -0.002

(0.010) (0.009) (0.004) (0.002) (0.010) (0.004)

Field fixed effects ✓ ✓ ✓ ✓ ✓ ✓

Year effects ✓ ✓ ✓ ✓ ✓ ✓

Observations 3,815,232 3,815,232 3,815,232 3,815,232 3,815,232 3,815,232

Clusters 2,172 2,172 2,172 2,172 2,172 2,172

(linear probability) (linear probability)

Panel A. OLS regressions

Land use (categories sum to one) Crop choice

High-

water Low-water

High-

value Low-value

Water 

needs

Crop 

revenue

(1) (2) (3) (4) (5) (6)

Ln (Supply) 0.000 0.018 * 0.016 ** 0.003 0.026 * 0.133

(0.008) (0.010) (0.008) (0.004) (0.016) (0.085)

Field fixed effects ✓ ✓ ✓ ✓ ✓ ✓

Year effects ✓ ✓ ✓ ✓ ✓ ✓

Observations 3,815,232 3,815,232 3,815,232 3,815,232 3,815,229 3,459,809

Clusters 2,172 2,172 2,172 2,172 2,172 2,165

(linear probability) (inverse hyperbolic sine)

Panel B. OLS regressions

Crop choice Summary measures

See notes for Table 2. In this table, estimates come from ordinary least squares regressions instead of instrumen-
tal variables.
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Table C4: Long-run effects of water supplies (with a rectangular kernel)

Crops 

planted Fallow Grassland

Natural 

uses

Annual 

crops

Perennial 

crops

(1) (2) (3) (4) (5) (6)

Ln (Mean Supply)

     Bandwidth: 25 km 0.076 *** -0.009 -0.065 *** -0.002 0.039 ** 0.037

(0.026) (0.015) (0.023) (0.005) (0.019) (0.026)

     Bandwidth: 10 km 0.055 *** -0.015 -0.040 *** 0.000 0.046 ** 0.009

(0.018) (0.016) (0.013) (0.005) (0.020) (0.016)

     Bandwidth: 5 km 0.045 *** -0.010 -0.036 *** 0.001 0.030 0.015

(0.017) (0.016) (0.010) (0.005) (0.019) (0.014)

Border pair × border segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment × More ✓ ✓ ✓ ✓ ✓ ✓

Latitude × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Longitude × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Observations (10 km bandwidth) 543,541 543,541 543,541 543,541 543,541 543,541

Clusters 180 180 180 180 180 180

Land use (categories sum to one) Crop choice

(linear probability) (linear probability)

Panel A. Rectangular kernel

High-

water Low-water

High-

value Low-value

Water 

needs

Crop 

revenue

(1) (2) (3) (4) (5) (6)

Ln (Mean Supply)

     Bandwidth: 25 km 0.060 ** 0.016 0.033 0.043 ** 0.186 *** 0.457 ***

(0.027) (0.015) (0.028) (0.017) (0.057) (0.171)

     Bandwidth: 10 km 0.032 0.024 0.002 0.054 *** 0.131 *** 0.338 **

(0.019) (0.015) (0.019) (0.016) (0.041) (0.141)

     Bandwidth: 5 km 0.028 0.016 0.002 0.042 *** 0.110 *** 0.270 **

(0.017) (0.014) (0.019) (0.016) (0.037) (0.135)

Border pair × border segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment × More ✓ ✓ ✓ ✓ ✓ ✓

Latitude × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Longitude × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Observations (10 km bandwidth) 543,541 543,541 543,541 543,541 543,541 543,011

Clusters 180 180 180 180 180 180

Crop choice Summary measures

(linear probability) (inverse hyperbolic sine)

Panel B. Rectangular kernel

See notes for Table 3. In this table, a rectangular kernel is used instead of a triangular kernel.
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Table C5: Long-run effects of water supplies (without controls for longitude and latitude)

Crops 

planted Fallow Grassland

Natural 

uses

Annual 

crops

Perennial 

crops

(1) (2) (3) (4) (5) (6)

Ln (Mean Supply)

     Bandwidth: 25 km 0.063 *** -0.011 -0.053 *** 0.001 0.037 * 0.026

(0.020) (0.014) (0.017) (0.004) (0.019) (0.020)

     Bandwidth: 10 km 0.049 *** -0.012 -0.038 *** 0.001 0.039 ** 0.010

(0.017) (0.015) (0.011) (0.005) (0.018) (0.015)

     Bandwidth: 5 km 0.039 *** -0.010 -0.030 *** 0.001 0.031 * 0.008

(0.015) (0.014) (0.010) (0.005) (0.018) (0.013)

Border pair × border segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment × More ✓ ✓ ✓ ✓ ✓ ✓

Latitude × pair × segment

Longitude × pair × segment

Observations (10 km bandwidth) 543,541 543,541 543,541 543,541 543,541 543,541

Clusters 180 180 180 180 180 180

Panel A. Not controlling for latitude and longitude

Land use (categories sum to one) Crop choice

(linear probability) (linear probability)

High-

water Low-water

High-

value Low-value

Water 

needs

Crop 

revenue

(1) (2) (3) (4) (5) (6)

Ln (Mean Supply)

     Bandwidth: 25 km 0.047 ** 0.015 0.015 0.048 *** 0.155 *** 0.379 ***

(0.021) (0.014) (0.022) (0.016) (0.044) (0.142)

     Bandwidth: 10 km 0.029 0.020 -0.002 0.051 *** 0.119 *** 0.302 **

(0.018) (0.013) (0.018) (0.015) (0.037) (0.131)

     Bandwidth: 5 km 0.024 0.015 -0.003 0.042 *** 0.097 *** 0.233 *

(0.016) (0.013) (0.017) (0.014) (0.033) (0.120)

Border pair × border segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment × More ✓ ✓ ✓ ✓ ✓ ✓

Latitude × pair × segment

Longitude × pair × segment

Observations (10 km bandwidth) 543,541 543,541 543,541 543,541 543,541 543,011

Clusters 180 180 180 180 180 180

Panel B. Not controlling for latitude and longitude

Crop choice Summary measures

(linear probability) (inverse hyperbolic sine)

See notes for Table 3. In this table, running variables in latitude and longitude are omitted.
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Table C6: Long-run effects of water supplies (without controlling for border segment)

Crops 

planted Fallow Grassland

Natural 

uses

Annual 

crops

Perennial 

crops

(1) (2) (3) (4) (5) (6)

Ln (Mean Supply)

     Bandwidth: 25 km 0.058 ** 0.000 -0.053 *** -0.005 0.044 ** 0.014

(0.023) (0.015) (0.020) (0.004) (0.020) (0.022)

     Bandwidth: 10 km 0.042 *** -0.001 -0.040 *** -0.001 0.036 ** 0.006

(0.015) (0.014) (0.012) (0.005) (0.017) (0.015)

     Bandwidth: 5 km 0.029 ** 0.001 -0.029 *** -0.001 0.030 * -0.001

(0.014) (0.014) (0.009) (0.005) (0.017) (0.012)

Border pair ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × More ✓ ✓ ✓ ✓ ✓ ✓

Latitude × pair ✓ ✓ ✓ ✓ ✓ ✓

Longitude × pair ✓ ✓ ✓ ✓ ✓ ✓

Observations (10 km bandwidth) 543,932 543,932 543,932 543,932 543,932 543,932

Clusters 180 180 180 180 180 180

Panel A. No border segments (only pair fixed effects)

Land use (categories sum to one) Crop choice

(linear probability) (linear probability)

High-

water Low-water

High-

value Low-value

Water 

needs

Crop 

revenue

(1) (2) (3) (4) (5) (6)

Ln (Mean Supply)

     Bandwidth: 25 km 0.042 * 0.017 0.005 0.053 *** 0.143 *** 0.342 **

(0.023) (0.014) (0.024) (0.018) (0.050) (0.159)

     Bandwidth: 10 km 0.027 0.015 -0.003 0.045 *** 0.108 *** 0.249 **

(0.017) (0.013) (0.016) (0.014) (0.035) (0.118)

     Bandwidth: 5 km 0.012 0.017 -0.008 0.037 *** 0.074 ** 0.154

(0.014) (0.012) (0.015) (0.014) (0.030) (0.106)

Border pair ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × More ✓ ✓ ✓ ✓ ✓ ✓

Latitude × pair ✓ ✓ ✓ ✓ ✓ ✓

Longitude × pair ✓ ✓ ✓ ✓ ✓ ✓

Observations (10 km bandwidth) 543,932 543,932 543,932 543,932 543,932 543,402

Clusters 180 180 180 180 180 180

Panel B. No border segments (only pair fixed effects)

Crop choice Summary measures

(linear probability) (inverse hyperbolic sine)

See notes for Table 3. In this table, regression discontinuities are performed at the level of border pairs (district
pair× county×dominant soil order) instead of border pair×border segment.
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Table C7: Long-run effects of water supplies (using smaller border segments)

Crops 

planted Fallow Grassland

Natural 

uses

Annual 

crops

Perennial 

crops

(1) (2) (3) (4) (5) (6)

Ln (Mean Supply)

     Bandwidth: 25 km 0.053 ** 0.000 -0.058 *** 0.005 0.030 0.023

(0.023) (0.020) (0.020) (0.007) (0.020) (0.018)

     Bandwidth: 10 km 0.044 ** -0.001 -0.046 *** 0.004 0.029 0.015

(0.021) (0.021) (0.014) (0.007) (0.020) (0.016)

     Bandwidth: 5 km 0.038 ** -0.001 -0.038 *** 0.001 0.022 0.016

(0.019) (0.020) (0.011) (0.007) (0.021) (0.014)

Border pair × border segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment × More ✓ ✓ ✓ ✓ ✓ ✓

Latitude × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Longitude × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Observations (10 km bandwidth) 542,979 542,979 542,979 542,979 542,979 542,979

Clusters 180 180 180 180 180 180

(linear probability) (linear probability)

Panel A. Smaller border segments (2 km)

Land use (categories sum to one) Crop choice

High-

water Low-water

High-

value Low-value

Water 

needs

Crop 

revenue

(1) (2) (3) (4) (5) (6)

Ln (Mean Supply)

     Bandwidth: 25 km 0.041 * 0.012 0.009 0.045 *** 0.131 ** 0.282

(0.023) (0.013) (0.024) (0.017) (0.053) (0.173)

     Bandwidth: 10 km 0.032 0.012 0.000 0.044 *** 0.112 ** 0.239

(0.022) (0.013) (0.022) (0.016) (0.050) (0.174)

     Bandwidth: 5 km 0.031 0.007 -0.002 0.040 ** 0.101 ** 0.208

(0.020) (0.014) (0.021) (0.016) (0.043) (0.155)

Border pair × border segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment × More ✓ ✓ ✓ ✓ ✓ ✓

Latitude × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Longitude × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Observations (10 km bandwidth) 542,979 542,979 542,979 542,979 542,979 542,449

Clusters 180 180 180 180 180 180

(linear probability) (inverse hyperbolic sine)

Panel B. Smaller border segments (2 km)

Crop choice Summary measures

See notes for Table 3. In this table, border segments are defined as two-kilometer grid cells, instead of five-
kilometer grid cells.
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Table C8: Long-run effects of water supplies (using pre-sample water allocations)

Crops 

planted Fallow Grassland

Natural 

uses

Annual 

crops

Perennial 

crops

(1) (2) (3) (4) (5) (6)

Ln (Mean Supply)

     Bandwidth: 25 km 0.044 ** 0.003 -0.047 *** 0.000 0.022 0.022

(0.020) (0.015) (0.018) (0.005) (0.019) (0.020)

     Bandwidth: 10 km 0.029 * 0.001 -0.031 *** 0.001 0.029 0.000

(0.017) (0.015) (0.011) (0.005) (0.020) (0.013)

     Bandwidth: 5 km 0.033 ** -0.005 -0.029 *** 0.000 0.028 0.005

(0.016) (0.015) (0.009) (0.005) (0.020) (0.012)

Border pair × border segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment × More ✓ ✓ ✓ ✓ ✓ ✓

Latitude × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Longitude × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Observations (10 km bandwidth) 543,541 543,541 543,541 543,541 543,541 543,541

Clusters 180 180 180 180 180 180

Panel A. Pre-sample instrument

Land use (categories sum to one) Crop choice

(linear probability) (linear probability)

High-

water Low-water

High-

value Low-value

Water 

needs

Crop 

revenue

(1) (2) (3) (4) (5) (6)

Ln (Mean Supply)

     Bandwidth: 25 km 0.026 0.017 0.007 0.036 ** 0.110 ** 0.232

(0.021) (0.015) (0.023) (0.016) (0.044) (0.143)

     Bandwidth: 10 km 0.003 0.026 * -0.015 0.044 *** 0.068 * 0.143

(0.017) (0.014) (0.018) (0.015) (0.036) (0.132)

     Bandwidth: 5 km 0.005 0.029 ** -0.008 0.042 *** 0.073 ** 0.188

(0.016) (0.013) (0.017) (0.016) (0.034) (0.123)

Border pair × border segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment × More ✓ ✓ ✓ ✓ ✓ ✓

Latitude × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Longitude × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Observations (10 km bandwidth) 543,541 543,541 543,541 543,541 543,541 543,011

Clusters 180 180 180 180 180 180

Panel B. Pre-sample instrument

Crop choice Summary measures

(linear probability) (inverse hyperbolic sine)

See notes for Table 3. In this table, the instrument (the “More” indicator for the district of each pair that has
relatively greater water allocations) is defined using mean water allocations over 1993-2006, instead of 2007-
2018.
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Table C9: Long-run effects of water supplies (using pre-sample water allocations and sup-
plies)

Crops 

planted Fallow Grassland

Natural 

uses

Annual 

crops

Perennial 

crops

(1) (2) (3) (4) (5) (6)

Ln (Mean Supply, 1993-2006)

     Bandwidth: 25 km 0.046 ** 0.004 -0.050 *** 0.000 0.023 0.023

(0.021) (0.016) (0.019) (0.005) (0.020) (0.021)

     Bandwidth: 10 km 0.031 * 0.001 -0.033 *** 0.001 0.030 0.000

(0.018) (0.016) (0.012) (0.005) (0.021) (0.014)

     Bandwidth: 5 km 0.035 ** -0.005 -0.031 *** 0.000 0.030 0.006

(0.017) (0.016) (0.010) (0.006) (0.021) (0.013)

Border pair × border segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment × More ✓ ✓ ✓ ✓ ✓ ✓

Latitude × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Longitude × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Observations (10 km bandwidth) 543,541 543,541 543,541 543,541 543,541 543,541

Clusters 180 180 180 180 180 180

Panel A. Pre-sample treatment variable and instrument

Land use (categories sum to one) Crop choice

(linear probability) (linear probability)

High-

water Low-water

High-

value Low-value

Water 

needs

Crop 

revenue

(1) (2) (3) (4) (5) (6)

Ln (Mean Supply, 1993-2006)

     Bandwidth: 25 km 0.028 0.018 0.008 0.038 ** 0.115 ** 0.244

(0.022) (0.015) (0.024) (0.017) (0.046) (0.151)

     Bandwidth: 10 km 0.003 0.028 * -0.016 0.047 *** 0.072 * 0.152

(0.018) (0.015) (0.019) (0.016) (0.038) (0.141)

     Bandwidth: 5 km 0.005 0.031 ** -0.009 0.044 *** 0.077 ** 0.199

(0.017) (0.014) (0.018) (0.016) (0.036) (0.131)

Border pair × border segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment × More ✓ ✓ ✓ ✓ ✓ ✓

Latitude × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Longitude × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Observations (10 km bandwidth) 543,541 543,541 543,541 543,541 543,541 543,011

Clusters 180 180 180 180 180 180

Panel B. Pre-sample treatment variable and instrument

Crop choice Summary measures

(linear probability) (inverse hyperbolic sine)

See notes for Table 3. In this table, both the treatment variable (the natural log of mean water supplies) and the
instrument (the “More” indicator for the district of each pair that has relatively greater water allocations) are
defined using means over 1993-2006, instead of 2007-2018.
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Table C10: Long-run effects of water supplies (using only close neighbor pairs)

Crops 

planted Fallow Grassland

Natural 

uses

Annual 

crops

Perennial 

crops

(1) (2) (3) (4) (5) (6)

Ln (Mean Supply)

     Bandwidth: 25 km 0.066 *** -0.005 -0.058 *** -0.002 0.032 0.034

(0.022) (0.016) (0.019) (0.005) (0.020) (0.022)

     Bandwidth: 10 km 0.051 *** -0.012 -0.038 *** 0.000 0.035 * 0.016

(0.018) (0.016) (0.011) (0.005) (0.020) (0.015)

     Bandwidth: 5 km 0.044 *** -0.013 -0.031 *** -0.001 0.032 * 0.012

(0.016) (0.015) (0.010) (0.005) (0.019) (0.013)

Border pair × border segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment × More ✓ ✓ ✓ ✓ ✓ ✓

Latitude × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Longitude × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Observations (10 km bandwidth) 325,377 325,377 325,377 325,377 325,377 325,377

Clusters 165 165 165 165 165 165

Land use (categories sum to one) Crop choice

(linear probability) (linear probability)

Panel A. Only close neighbor pairs (each side has data within one quarter section [0.57 km])

High-

water Low-water

High-

value Low-value

Water 

needs

Crop 

revenue

(1) (2) (3) (4) (5) (6)

Ln (Mean Supply)

     Bandwidth: 25 km 0.052 ** 0.014 0.014 0.052 *** 0.163 *** 0.376 **

(0.023) (0.015) (0.024) (0.017) (0.050) (0.161)

     Bandwidth: 10 km 0.032 * 0.019 0.005 0.046 *** 0.124 *** 0.319 **

(0.018) (0.014) (0.018) (0.016) (0.040) (0.142)

     Bandwidth: 5 km 0.024 0.021 0.001 0.043 *** 0.106 *** 0.275 **

(0.016) (0.013) (0.017) (0.015) (0.035) (0.124)

Border pair × border segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment × More ✓ ✓ ✓ ✓ ✓ ✓

Latitude × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Longitude × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Observations (10 km bandwidth) 325,377 325,377 325,377 325,377 325,377 324,971

Clusters 165 165 165 165 165 165

Crop choice Summary measures

(linear probability) (inverse hyperbolic sine)

Panel B. Only close neighbor pairs (each side has data within one quarter section [0.57 km])

See notes for Table 3. In this table, estimates include only border pairs that have data within one half diagonal
of one quarter section (0.57 km) on each side of the border.
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Table C11: Long-run effects of water supplies (OLS regressions)

Crops 

planted Fallow Grassland

Natural 

uses

Annual 

crops

Perennial 

crops

(1) (2) (3) (4) (5) (6)

Ln (Mean Supply)

     Bandwidth: 25 km 0.055 *** -0.024 *** -0.029 *** -0.002 0.047 *** 0.007

(0.013) (0.007) (0.011) (0.004) (0.012) (0.012)

     Bandwidth: 10 km 0.047 *** -0.027 *** -0.019 *** -0.001 0.048 *** -0.001

(0.009) (0.006) (0.006) (0.004) (0.011) (0.008)

     Bandwidth: 5 km 0.050 *** -0.030 *** -0.020 *** 0.000 0.051 *** -0.001

(0.009) (0.006) (0.006) (0.004) (0.010) (0.008)

Border pair × border segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment × More ✓ ✓ ✓ ✓ ✓ ✓

Latitude × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Longitude × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Observations (10 km bandwidth) 543,541 543,541 543,541 543,541 543,541 543,541

Clusters 180 180 180 180 180 180

Panel A. OLS regressions

Land use (categories sum to one) Crop choice

(linear probability) (linear probability)

High-

water Low-water

High-

value Low-value

Water 

needs

Crop 

revenue

(1) (2) (3) (4) (5) (6)

Ln (Mean Supply)

     Bandwidth: 25 km 0.030 ** 0.024 * 0.016 0.039 *** 0.129 *** 0.379 ***

(0.013) (0.013) (0.015) (0.014) (0.026) (0.092)

     Bandwidth: 10 km 0.021 ** 0.026 ** 0.005 0.042 *** 0.112 *** 0.337 ***

(0.009) (0.011) (0.010) (0.011) (0.019) (0.073)

     Bandwidth: 5 km 0.026 *** 0.024 ** 0.007 0.043 *** 0.116 *** 0.345 ***

(0.009) (0.010) (0.010) (0.011) (0.017) (0.069)

Border pair × border segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment × More ✓ ✓ ✓ ✓ ✓ ✓

Latitude × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Longitude × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Observations (10 km bandwidth) 543,541 543,541 543,541 543,541 543,541 543,011

Clusters 180 180 180 180 180 180

Panel B. OLS regressions

Crop choice Summary measures

(linear probability) (inverse hyperbolic sine)

See notes for Table 3. In this table, regressions are estimated by ordinary least squares instead of instrumental
variables.
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Table C12: Long-run effects of water supplies (excluding a narrow “donut hole” around the
border)

Crops 

planted Fallow Grassland

Natural 

uses

Annual 

crops

Perennial 

crops

(1) (2) (3) (4) (5) (6)

Ln (Mean Supply)

     Bandwidth: 25 km 0.077 *** -0.011 -0.062 ** -0.004 0.035 * 0.042

(0.027) (0.014) (0.026) (0.005) (0.019) (0.028)

     Bandwidth: 10 km 0.058 *** -0.018 -0.040 *** 0.000 0.048 ** 0.010

(0.020) (0.016) (0.015) (0.005) (0.021) (0.021)

     Bandwidth: 5 km 0.055 *** -0.027 * -0.027 ** -0.001 0.035 * 0.020

(0.019) (0.016) (0.013) (0.007) (0.021) (0.021)

Border pair × border segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment × More ✓ ✓ ✓ ✓ ✓ ✓

Latitude × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Longitude × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Observations (10 km bandwidth) 520,002 520,002 520,002 520,002 520,002 520,002

Clusters 180 180 180 180 180 180

Panel A. Excluding observations within one quarter-section of the border (0.57 km)

Land use (categories sum to one) Crop choice

(linear probability) (linear probability)

High-

water Low-water

High-

value Low-value

Water 

needs

Crop 

revenue

(1) (2) (3) (4) (5) (6)

Ln (Mean Supply)

     Bandwidth: 25 km 0.068 ** 0.009 0.033 0.044 ** 0.194 *** 0.483 ***

(0.028) (0.016) (0.030) (0.019) (0.059) (0.171)

     Bandwidth: 10 km 0.038 * 0.020 0.002 0.056 *** 0.143 *** 0.382 **

(0.023) (0.016) (0.023) (0.020) (0.045) (0.152)

     Bandwidth: 5 km 0.044 ** 0.011 0.010 0.045 ** 0.140 *** 0.418 ***

(0.022) (0.017) (0.024) (0.020) (0.043) (0.154)

Border pair × border segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment × More ✓ ✓ ✓ ✓ ✓ ✓

Latitude × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Longitude × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Observations (10 km bandwidth) 520,002 520,002 520,002 520,002 520,002 519,515

Clusters 180 180 180 180 180 180

Crop choice Summary measures

Panel B. Excluding observations within one quarter-section of the border (0.57 km)

(linear probability) (inverse hyperbolic sine)

See notes for Table 3. In this table, estimates exclude observations within the half diagonal of one quarter section
(0.57 km).
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Table C13: Long-run effects of water supplies (excluding a wider “donut hole” around the
border)

Crops 

planted Fallow Grassland

Natural 

uses

Annual 

crops

Perennial 

crops

(1) (2) (3) (4) (5) (6)

Ln (Mean Supply)

     Bandwidth: 25 km 0.082 ** 0.004 -0.083 ** -0.004 0.020 0.063 *

(0.034) (0.015) (0.037) (0.006) (0.019) (0.035)

     Bandwidth: 10 km 0.052 ** -0.004 -0.054 ** 0.005 0.041 * 0.011

(0.023) (0.016) (0.021) (0.006) (0.024) (0.027)

     Bandwidth: 5 km 0.047 * -0.012 -0.045 ** 0.010 -0.002 0.050

(0.026) (0.020) (0.019) (0.007) (0.029) (0.031)

Border pair × border segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment × More ✓ ✓ ✓ ✓ ✓ ✓

Latitude × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Longitude × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Observations (10 km bandwidth) 490,921 490,921 490,921 490,921 490,921 490,921

Clusters 179 179 179 179 179 179

Land use (categories sum to one) Crop choice

(linear probability) (linear probability)

Panel A. Excluding observations within one section of the border (1.14 km)

High-

water Low-water

High-

value Low-value

Water 

needs

Crop 

revenue

(1) (2) (3) (4) (5) (6)

Ln (Mean Supply)

     Bandwidth: 25 km 0.085 ** -0.003 0.059 0.023 0.216 *** 0.492 **

(0.035) (0.018) (0.037) (0.021) (0.076) (0.201)

     Bandwidth: 10 km 0.041 0.011 0.005 0.047 ** 0.137 ** 0.293 *

(0.028) (0.019) (0.028) (0.022) (0.053) (0.166)

     Bandwidth: 5 km 0.071 ** -0.023 0.032 0.015 0.147 ** 0.330

(0.031) (0.025) (0.032) (0.026) (0.061) (0.214)

Border pair × border segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Distance × pair × segment × More ✓ ✓ ✓ ✓ ✓ ✓

Latitude × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Longitude × pair × segment ✓ ✓ ✓ ✓ ✓ ✓

Observations (10 km bandwidth) 490,921 490,921 490,921 490,921 490,921 490,500

Clusters 179 179 179 179 179 179

Crop choice Summary measures

(linear probability) (inverse hyperbolic sine)

Panel B. Excluding observations within one section of the border (1.14 km)

See notes for Table 3. In this table, estimates exclude observations within the half diagonal of one section (1.14
km).
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