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Abstract

We study the regulation of common-pool resources under long implementation hori-
zons. First, we show that future regulation can induce either anticipatory compliance
or perverse incentives to accelerate extraction (a “Green Paradox”). Then, we eval-
uate the early effects of a major groundwater regulation in California that does not
yet bind. We assemble new data and compare within pairs of neighboring agen-
cies that face varying restrictions on extraction. Differences in future regulation do
not affect measures of water-intensive investments or groundwater extraction today.
This lack of anticipatory response in either direction can be explained by time pref-
erences: high private discount rates and/or a long implementation horizon dissipate
any anticipatory effects. Common-pool resources under open access face a lower
risk of perverse incentives than excludable resources, but private actors still may not
comply in advance.
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1 Introduction

Policies in natural resource management often face a long implementation horizon. While
a gas tax increase may occur with only weeks or months of notice to drivers, carbon targets
may be set decades in advance. Long runways are often intended to reduce transition costs
by allowing people to adjust gradually over time. But they may instead introduce perverse
incentives as people race to extract or consume the resource before the regulation binds.
Knowing when anticipatory responses are likely to hasten or hinder the implementation
of a policy goal is crucial for understanding both optimal policy design and how policies
interact with their political economy context.

In the case of excludable resources like fossil fuels, these perverse incentives are
known as the “Green Paradox”: extraction restrictions in the future reduce scarcity rents
today, leading extractors to substitute toward the present, which can undermine the orig-
inal policy goals (Sinn, 2008). But for common-pool resources – those that are non-
excludable or lack complete property rights – it remains unclear whether or under what
conditions a Green Paradox might occur. Empirical evidence so far is limited, but in at
least one case, designating a fishery for eventual protected status triggered an extraction
race (McDermott et al., 2019).

This paper studies the anticipatory effects of regulation in the context of groundwater
resources. First, we develop a theoretical model that formalizes the conditions under
which future regulation gives rise to anticipatory effects in either direction. We show that
a Green Paradox can occur for groundwater when there is some degree of property rights,
but not under full open access. When an aquifer is shared among many extractors, each
extractor already lacks incentive to save for the future, leaving no opportunity to profitably
increase extraction in response to impending regulation. We then show that regulation
can also have the opposite effect: When farmers can invest in water-intensive production
technology (such as planting orchards or drilling new wells), future regulation decreases
the expected return to investment, which can lead farmers to reduce extraction even before
the regulation binds. Therefore, the net effect of future regulation on extraction in the
presence of investment opportunities can be either positive or negative.

Using this theoretical lens, we empirically evaluate the ongoing effects of Califor-
nia’s Sustainable Groundwater Management Act of 2014 (SGMA), a major regime shift
in groundwater management policy in the United States. SGMA provides a useful em-
pirical setting because its decentralized structure gives rise to rich policy variation across
the state. Hundreds of new groundwater management agencies are charged with halt-
ing groundwater depletion within their jurisdictions by the year 2040. (Previously, most
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groundwater use in California was not governed by binding regulations.) Areas with
greater overdraft at baseline must impose greater future reductions in groundwater ex-
traction to achieve sustainability.1

We use this variation to test how SGMA has affected groundwater extraction and
water-intensive agricultural investments to date. The empirical challenge is that regions
with extreme overdraft are different in many ways from those with little overdraft, so a
simple comparison between them could give misleading results. Instead, we set up a more
careful comparison. Our research design compares changes over time for cropland near
the boundaries of neighboring groundwater administrative regions called subbasins. Sub-
basins divide continuous hydrological basins into discrete regulatory units, introducing
spatial discontinuities in future regulatory stringency. Within each pair of neighbors, one
subbasin is subject to greater future pumping reductions than the other, yet other factors
such as crop suitability are similar. Past groundwater development and present ground-
water levels are different on average between neighboring subbasins but continuous at
the boundaries between them. We restrict the sample to cropland within close distance
of the boundaries (in the spirit of a regression discontinuity design) and pool all cases of
neighboring subbasins, forming a stacked-pair differences-in-differences design.

We consider two types of capital investment: new plantings of perennial crops (such as
orchards or vineyards) and construction of new groundwater wells for irrigation. These
are the most relevant investments for groundwater in California, where essentially all
cropland is irrigated, farmers produce a diverse mix of annual and perennial crops, and
groundwater constitutes a significant portion of the water supply.2 They are also observ-
able, through remote sensing and regulatory reports. Extraction itself is unobserved, since
groundwater pumping is generally unmonitored throughout California. Instead, as a close
proxy, we form an index of water use by combining remote sensing land-use data with
scientific estimates of water use by crop.3

1Overdraft refers to the difference between groundwater extraction and recharge through percolation
and lateral flow. Overdraft mechanically results in a decline in groundwater levels, referred to as depletion.

2California’s top three crops by revenue and acreage – almonds, grapes, and pistachios – are all perma-
nent crops that feature large upfront investments (high initial capital costs plus several unproductive early
years) and long productive lives of 20 to 40 years. California’s Central Valley has undergone a major ex-
pansion of perennial fruit and nut tree crops over the past couple of decades, with implications for water
demand (Mall and Herman, 2019). In fact, since SGMA passed in 2014, acreage in perennial crops has
increased by nearly 50%. Similarly, new well construction has shown no evidence of slowing after the
passage of SGMA. Agricultural capital investments are likely to be influenced by information on future
water supply (Lobell and Field, 2011; Arellano-Gonzalez and Moore, 2020), and more significant changes
are expected in areas facing greater restrictions under SGMA.

3This water use index omits intensive-margin differences in water use conditional on crop, but Califor-
nia agriculture is dominated by hundreds of specialty crops with relatively inflexible irrigation requirements,
so we expect the crop choice and fallowing margins to reflect most of the year-to-year variation in water

2



Measuring future extraction restrictions is not straightforward, due to high scientific
uncertainty and lack of agreement over the volume of reductions that will be necessary
in the future to halt further depletion in each subbasin. For anticipatory responses, what
matters is extractors’ own beliefs, but these are not directly observable. Instead, we as-
semble measures of overdraft volume and planned future reductions as stated in Ground-
water Sustainability Plans (GSPs) submitted by each local groundwater agency to the
state. These plans were the product of lengthy public participation processes with local
stakeholders, so they are likely the best information extractors have about their own fu-
ture restrictions. Still, it is possible that numbers in GSPs are strategically underestimated
and that extractors are aware. We therefore obtain a third estimate by running one of
the main hydrological models commonly used for water resource planning in California.
This statewide model avoids the risk of manipulation, but the GSPs may incorporate more
detailed knowledge of local hydrological systems, plus they represent the officially stated
intentions of the relevant regulatory agencies. Because no single measure is clearly supe-
rior to the others, we average across all three measures to extract a common signal, and
explore robustness to using each measure alone.

Our results show that neither investments (new perennial crops and new well construc-
tion) nor groundwater extraction (as proxied by our index of water use) have changed as
a result of SGMA. All three outcomes followed very similar patterns across neighboring
subbasins that face greater and lesser future pumping restrictions, both before and after
SGMA passed and began to be implemented. Confidence intervals are tight, and results
are robust to alternative sample definitions, treatment variables, and specifications.

To interpret the empirical results, one tempting explanation might be that the transition-
smoothing and Green Paradox effects operate in opposite directions and cancel each other
out. But our theoretical model allows us to rule out this scenario, since neither investment
nor extraction have changed after SGMA. Instead, the null effects imply that either (1)
groundwater users’ beliefs of future regulatory stringency are much lower than implied
by law and the best available science, or (2) time preferences (i.e., the magnitude of pri-
vate discount rates relative to the implementation horizon) shrink all anticipatory motives.
Our results imply that regulators cannot count on private actors to gradually transition to
the new regime.

Our paper makes both empirical and theoretical contributions. Empirically, we add
to a scant literature that tests the Green Paradox in real-world settings (Jensen et al.,
2020; Van der Ploeg and Withagen, 2020). Few empirical settings exist to credibly mea-

use. We control for the other principal source of irrigation water – surface water deliveries – though we find
it does not affect the results.
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sure anticipatory effects in natural resource regulation, because policy variation is rare.
Studying SGMA allows us to make progress, not only because it served as a relatively
sudden change in future policy, but also because its decentralized framework created sub-
stantial variation in regulatory stringency across regions. We also provide the first test
of the Green Paradox in the specific context of groundwater. Previous studies have fo-
cused on pollution and fossil fuel policy (Di Maria et al., 2014; Lemoine, 2017; Norman
and Schlenker, 2024), land development in response to the Endangered Species Act (List
et al., 2006), and fisheries (McDermott et al., 2019), with mixed results. In the ground-
water context, we find no evidence that perverse preemptive behavior is undermining the
policy goal, yet we also do not find evidence that farmers are making early adjustments
to meet the regulatory targets.4

Second, our theoretical model extends a literature analyzing the anticipatory effects of
natural resource regulation to include common-pool resources under open-access condi-
tions. Stemming from the seminal paper by Hotelling (1931), a rich theoretical literature
exists explaining how preemptive resource extraction is altered by policies and other fac-
tors over time in the presence of well-defined property rights (Sinn, 1982; Cairns, 2014).5

This literature considers the endogeneity of total extraction (Heal, 1976), the role of im-
perfect substitutes (Di Maria et al., 2012) and backstop technologies, and spatial leakage.
Most closely related to this paper, McDermott et al. (2019) verbally outline how anticipa-
tory effects might play out for common-pool resources managed under open-access and
speculate on possible mechanisms that may give rise to a Green Paradox in fisheries. We
go further by characterizing these conditions analytically and applying them to the con-
text of groundwater. We also incorporate a new mechanism that may be applicable more
broadly: investment in resource-intensive production technology. Our theoretical results
formalize the intuition that perverse incentives from regulation are less of a concern for
common-pool resources under open access than for other resources.

Many of the world’s most productive agricultural regions are experiencing significant
declines in groundwater levels and storage (Wada et al., 2010). Despite the urgency of
groundwater issues, regulation remains rare.6 California’s SGMA has been hailed as a

4A related literature considers the value of groundwater as capitalized in land values, which can reflect
potential future limits on groundwater pumping. Edwards et al. (2024) find that senior water rights are more
valuable than junior rights, and suggest this may reflect the perception that junior rights holders face higher
risk of future regulation.

5A rich literature exists on problems and solutions for the management of oilfields – a canonical ex-
ample of a common-pool resource (Libecap and Wiggins, 1984). An important distinction between oil and
groundwater is the presence and absence of well-defined property rights. With exceptions, groundwater is
less likely to feature well-defined property rights. The relevant literature modeling oil extraction and the
green paradox assumes well-defined property rights.

6Examples of agricultural groundwater management do exist but are often at local levels and limited
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landmark change – a potential model for groundwater management worldwide – and is
arguably the biggest statewide regulatory shift in U.S. groundwater history. But it remains
to be seen whether a long implementation horizon will help the agricultural sector adjust
gradually as intended, or if it will only delay the necessary adjustments until they are
disruptive.

2 Background

2.1 Stock externalities in groundwater

Groundwater is typically categorized as a common-pool resource because it freely flows
underground, making property rights difficult to assign. Even if groundwater access is
appurtenant to land and property rights to land are well-defined, the groundwater itself is
non-excludable among overlaying landowners. Common-pool resources can give rise to
stock externalities, in which users make extraction decisions without fully internalizing
how they affect the overall resource stock. In the extreme case, which we refer to as
“full open access” following Ayres et al. (2021), each user is atomistic with respect to the
resource stock and extracts without considering implications for the future.

Most real-world aquifers lack complete property rights yet fall short of this extreme
case for several reasons. First, institutions: Groundwater is difficult to access without
landownership, so the number of users who share the resource is finite. Second, hydro-
geology: Water levels tend to equalize throughout an aquifer eventually but not instan-
taneously. The spatial externalities decline with distance, so neighbors have more effect
on local resource stocks than distant users. Third, norms and preferences: Even absent
formal management or regulation, users may still cooperate or exhibit altruism, behaving
as if their own extraction affects the overall resource stock more than it does.

We therefore make no assumptions on the extent to which groundwater users in Cal-
ifornia internalize the effects of their own extraction.7 Our theoretical model nests both
complete property rights and full open access as limiting cases, and our empirical analysis
measures the actual response without imposing prior restrictions.

to small areas, such as command-and-control policies in parts of Kansas (Drysdale and Hendricks, 2018),
market-based instruments in parts of Colorado (Smith et al., 2017) and California (Bruno and Jessoe, 2021;
Ayres et al., 2021), or well drilling moratoria.

7One potential measure might be the number of landowners in each basin, but this is incomplete because
it ignores the roles of hydrogeology and norms.
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2.2 Groundwater management before and after SGMA

Groundwater levels in California have been declining over the last several decades, espe-
cially in the Central Valley, raising fears about the long-term availability of the resource.
Before the Sustainable Groundwater Management Act of 2014 (SGMA), the state gov-
ernment had little involvement in groundwater management, and only a few areas were
managed by local governments (Dennis et al., 2020). The vast majority of basins allowed
for unrestricted pumping among overlying landowners; the absence of collective manage-
ment has been attributed to large transaction costs (Ayres et al., 2018). Notable exceptions
include several groundwater basins in Southern California, such as the Mojave groundwa-
ter basin, that have undergone adjudication proceedings to constrain pumping and achieve
a sustainable yield prior to SGMA passing.

SGMA provided a new statewide mandate for groundwater regulation with a decen-
tralized structure. It required stakeholders in all overdrafted basins or subbasins in the
state to form Groundwater Sustainability Agencies (GSAs), which then must develop and
implement plans to reach and maintain long-term stable groundwater levels. GSAs are
given flexibility to manage the resource however they see fit, as long as their approach is
documented in a “Groundwater Sustainability Plan” (GSP) and approved by the state.

The timeline to achieve sustainability is long. Although SGMA was passed in 2014,
GSAs are not required to achieve sustainability until 2040 or 2042. However, the plans
were set much earlier. GSPs were required to be adopted by January 31, 2020 for GSAs in
areas classified as critically overdrafted, and by January 31, 2022 for GSAs in other high-
and medium-priority basins or subbasins. Once adopted, plans formally go into effect.

Sept 2014

SGMA passes

Jan 2017

Deadline to form GSA

2020-2022

Provide plan

2040-2042

Achieve sustainability

SGMA created substantial variation in regulatory stringency, since areas with more
overdraft must adopt greater pumping restrictions in order to achieve sustainability. There
were 111 GSAs determined to be of high and medium priority under SGMA, together
covering the majority of agricultural land and accounting for over 95% of the groundwater
pumping in the state. Figure 1 shows a map of all groundwater basins and subbasins in
California and distinguishes which are designated as critically overdrafted and subject to
a slightly shorter implementation horizon.

Farmers and landowners are generally well-informed about SGMA and likely believe
that it will be enforced. SGMA has been a highly salient issue for communities in the
Central Valley and the agricultural sector; it is covered extensively by local newspapers
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and trade publications. GSAs were also required by law to conduct stakeholder engage-
ment and outreach via public meetings and public notices with periods of open comment.
SGMA created a role for the State Water Resources Control Board to take over man-
agement of a given subbasin if local authorities fail to take adequate measures toward
achieving sustainability. While the state board has limited bandwidth and legal authority
for regulating groundwater and enforcing SGMA, it is likely that this designated role for
the state as a backstop reduces the possibility that GSPs lack teeth (Bruno et al., 2023).

Understanding how sustainability is defined and implemented under the law is impor-
tant for interpreting what it means for farmers’ beliefs about their future water availability.
Sustainability under SGMA is formally defined by the use and management of groundwa-
ter in a manner that can be maintained without causing “undesirable results” in regards to
six key indicators. The six indicators include (1) chronic lowering of groundwater levels
(depletion of supply), (2) reduction of groundwater storage, (3) seawater intrusion, (4)
degraded water quality, (5) land subsidence, and (6) depletion of interconnected surface
water. Avoidance of these six features to a “significant and unreasonable” degree consti-
tutes a sustainable outcome. Plans are reviewed by the state for comprehensiveness and
sufficiency. Inadequate plans are returned for revisions. Failure to comply results in the
state coming in as the backstop and taking over control.8

Despite the legal complexity, all six “undesirable results” are closely related both
physically and in regulatory plans. Achieving sustainability under SGMA is typically
discussed in terms of correcting overdraft, which is relevant for all basins and correlated
with each of the sustainability indicators. It is a well-understood metric that can be mod-
eled hydrologically. We take the task of GSAs to be to limit extraction in order to end
overdraft.

2.3 The spatial organization of regulation under SGMA

Our research design takes advantage of the fact that SGMA organized regulation within
jurisdictions of administrative convenience. SGMA required each subbasin to have its
own GSA, using pre-existing definitions of basins and subbasins from California’s De-
partment of Water Resources (DWR).9 Crucially, basins are defined according to physical
hydrogeological features, but subbasins are not. A basin is a geographic area that contains

8SGMA does not alter pre-existing groundwater rights, potentially affecting the state’s legal authority
to enforce groundwater restrictions. The state’s ability to operate as a backstop in the case of local non-
compliance could also be influenced by limited agency resources.

9DWR’s Bulletin 118 describes California’s 515 groundwater basins and subbasins. These definitions
were previously used for organizing information and data but not for regulation.
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Figure 1: Critical Overdraft Designation of California Groundwater Basins

Critically Overdrafted

Not Critically Overdrafted

Note: The figure highlights which groundwater basins
were designated as critically overdrafted. Our study fo-
cuses on groundwater agencies in the Central Valley,
which is where the majority of basins subject to SGMA
are concentrated.

8



substantial groundwater resources and is connected underground such that groundwater
can easily flow laterally. Subbasins are subdivisions of basins whose boundaries follow
either administrative boundaries (such as counties or water districts) or subtle surface
topographical features that do not affect the continuity of the underlying aquifer. For
example, the San Joaquin Valley is considered all one basin with 19 subbasins.

As a result, regulation changes discontinuously across subbasin boundaries, but ground-
water levels do not. Within a basin, groundwater moves freely in response to pressure gra-
dients, so groundwater levels vary smoothly. Even if two neighboring subbasins exhibit
different rates of extraction in aggregate, groundwater levels will be equal at the boundary
between them. We therefore compare outcomes across subbasins within the same basin
and limit the sample to land near the boundary. This design allows us to isolate the effect
of regulation while holding constant the resource stock itself, in addition to factors such
as land quality and crop suitability.

At the same time, there is still meaningful variation in future regulation under SGMA
between neighboring subbasins. The key is that groundwater levels (and past groundwater
development) can vary considerably between neighboring subbasins on average, even
though they are similar near their boundaries. Persistent spatial variation in extraction
rates produces persistent spatial variation in groundwater levels, since groundwater does
not flow instantaneously. In other words, groundwater levels would equalize throughout
a basin in equilibrium (i.e., if all extraction and recharge halted for a very long time), but
can exhibit stable differences in steady state (i.e., with constant extraction and recharge
rates).

One additional complexity is that SGMA allowed each subbasin to have more than
one GSA, as long as they cover the entire subbasin and coordinate certain water-budget
accounting and monitoring efforts. Even when multiple GSAs have formed within one
subbasin, they have often chosen to coordinate management under one joint GSP. Our
empirical analysis therefore focuses on comparisons between neighboring GSAs in adja-
cent subbasins, rather than between GSAs within the same subbasin, because plans might
be coordinated in unobserved ways.

3 A Model of Groundwater Extraction in Anticipation of
Regulation

We first set up a general model of groundwater extraction in the absence of regulation that
follows prior literature. We then introduce regulation in a future period and analyze its ef-
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fect on extraction, holding constant the production function. After that, we introduce the
potential for endogenous investment in a water-intensive production technology and ana-
lyze how the investment decision responds to future regulation. Finally, we characterize
the total effect of future regulation on current extraction through all channels.

Our model is positive, not normative. In a departure from much of the prior theoret-
ical literature on groundwater regulation, our goal is not to determine the optimal degree
of regulation. Instead, we take the regulation as exogenous and model how extractors
respond to it.

3.1 No regulation

We assume N identical users share an aquifer and behave non-cooperatively. Each user i

chooses a quantity of groundwater, yit , to extract in each period t to maximize the present
value of profits (or net benefits) into the indefinite future. Users each obtain benefits from
groundwater, B(yit), that are increasing and concave in quantity. They also incur per-unit
extraction (pumping) costs, c(xit), that are decreasing in the user-specific resource stock
xit ;10 i.e., costs are increasing in depth to the water table. Benefits and costs are discounted
at an interest rate r > 0.

Groundwater is depletable yet renewable. The resource stock in each period is equal
to the resource stock in the previous period minus the mean of extraction quantities across
all N users, plus natural recharge g. This is a “bathtub” model of groundwater: the water
level equalizes across the aquifer between each period, such that each user’s extraction
affects the resource stock for all users in equal proportion. The bathtub model allows for
tractability without much loss of generality, since N can also be thought of as the effective

number of other users that affect each user’s resource stock. It also maps onto models
with more complex hydrology, in which N can represent more generally the inverse share
of each user’s own extraction that they internalize.11

Together, each user’s private extraction problem is:

max
{yit}∞

t=0

∞

∑
t=0

(1+ r)−t
[
B(yit)− c(xit)yit

]
(1)

10The user-specific resource stock xit refers to the resource stock in the cell or patch of land that the user
controls. Resource stocks equalize in this model, xit = xt for all i, but this is a result rather than a primitive.

11The bathtub model assumes that water levels instantaneously equalize across all cells within an aquifer
(Negri, 1989; Provencher and Burt, 1993), but it is closely related to models that allow resource stocks to
flow more slowly between cells, depending on the hydraulic conductivity of the aquifer (Saak and Peterson,
2007; Pfeiffer and Lin, 2012; Edwards, 2016). For example, an aquifer with low conductivity will have
similar patterns of externalities as one with infinite conductivity but few users. N here is inversely related
to the inter-cell transfer coefficient in those models.

10



s.t. xi,t+1 = xit +g− 1
N ∑

N
j=1 y jt ∀t ≥ 0.

Note the last term in the equation of motion includes both user i’s own extraction and
the extraction of the other users j 6= i. We apply a Markov perfect equilibrium concept,
in which there is a Nash equilibrium in every period and the past affects the present only
through state variables (Provencher and Burt, 1993; Sears et al., 2019). We take first-order
conditions (to find each user’s best response as a function of others’ extraction) and then
impose symmetry across users. The resulting equilibrium is described by an expression
for resource rents and an Euler equation (for proofs see Appendix Section A.1):

B′(yit)︸ ︷︷ ︸
marginal benefits

= c(xit)︸ ︷︷ ︸
marginal cost of pumping

+
1
N
(1+ r)t

µit︸ ︷︷ ︸
share of scarcity value

(2)

B′(yit)− c(xit)︸ ︷︷ ︸
marginal net benefits now

=(1+ r)−1[B′(yi,t+1)− c(xi,t+1)
]︸ ︷︷ ︸

marginal net benefits next period

+ (1+ r)−1 1
N
[−c′(xi,t+1)]yi,t+1.︸ ︷︷ ︸

marginal effect on own pumping costs next period
(3)

Efficient extraction under complete property rights. Consider the case in which each
user’s extraction affects only their own stock, N = 1. This could represent a basin with a
single landowner or an isolated aquifer with very low hydraulic conductivity. Here, the
user fully internalizes the effect of depletion on their own future extraction costs. They
restrain themselves in each period – instead of extracting until current marginal benefits
equal the price of extraction, they stop sooner and leave more for future periods. Equation
2 says that marginal benefits equal the per-unit extraction cost plus the full scarcity value
µit (a.k.a. resource rent or marginal user cost). In this case, the problem is equivalent to
the social planner’s problem for an aquifer with any value of N.

Overextraction in open access. Next, consider the limiting case as N→ ∞, represent-
ing a large aquifer with many users and high hydraulic conductivity. As N grows, each
user’s extraction affects their own stock by less and less. In the limit, each user’s share
of the scarcity value becomes 0, so Equation 2 simplifies to B′(yit) = c(xit): Marginal
benefits equal marginal costs in each period.

This equation implicitly defines the extraction quantity yit , since there is only one
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solution for any value of the resource stock xit . Users extract every unit for which the
benefits exceed the extraction costs. They do not consider how their extraction today
affects future costs, since their own extraction affects the resource stock by a vanishingly
small amount. The result is overextraction as compared with the social planner’s solution.
In Equation 3, the third term also becomes 0, so the equation says that the present value
of marginal net benefits is equalized across periods.

3.2 Future regulation induces a Green Paradox, except in full open
access

Next, we consider how extraction responds to exogenous future regulation of groundwater
extraction. We model the regulation as taking the form of quantity limits on extraction.12

Regulation brings both costs and benefits: it reduces the quantity of water that a user can
extract, but it also reduces everyone else’s extraction, which improves resource stocks and
reduces pumping costs.

We consider two periods of interest: Period 0 is unregulated, and period 1 is regulated.
In period 0, users are aware of the future regulation but choose extraction quantities freely.
In period 1, we assume that regulation is a binding constraint: yi1 = ȳ, for all users i. To
close the model, we assume that extraction enters a steady state in period 2, such that
xit = xi2 and therefore yit = g for all t ≥ 2. This step provides a continuation value of
the resource past our two periods of interest; without it, users would mine until marginal
benefits equal marginal costs in period 0. Specifying this continuation value as a steady
state, rather than some other behavior, is the key that transforms the model into a finite-
horizon problem and allows us to obtain analytical solutions. Imposing it in period 2 is an
approximation to the asymptotic approach that would occur in an infinite-horizon model:
Assuming quantity limits are higher (less stringent) than natural recharge, resource stocks
would fall until eventually the regulation no longer binds and extraction declines toward
the steady-state value.13

Each period can be viewed as lasting many years. In our setting, period 0 represents

12Modeling regulation as a tax (a per-unit pumping fee) would exhibit similar dynamics, but we are
unable to obtain easily interpretable analytical expressions for that scenario. The reason is that a tax leaves
period-1 extraction as an additional free variable, which increases algebraic complexity. More groundwater
basins are planning to comply with SGMA using quantity restrictions than pumping fees (Bruno et al.,
2023).

13If quantity limits are lower (more stringent) than natural recharge, then resource stocks would rise until
they reach a maximum value and a new steady state begins, but this also does not change the qualitative
results. Requiring the steady state to begin in period 2 (as opposed to later) is important for obtaining
closed-form expressions but not for our qualitative results. Simulations that allow a smoother approach
over more periods obtain the same directional results.
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the time between the passage of SGMA and its implementation, period 1 represents the
time following SGMA implementation during which groundwater levels would fall more
quickly absent SGMA, and period 2 represents the distant future in which groundwater
levels finally stabilize regardless of regulation.14 Including more periods in the model
would allow us to obtain more nuanced approach paths, first to the regulation and later to
the steady state. The qualitative results would not change, but we would lose the closed-
form analytical insights, because it would need to be simulated.

Finally, we parameterize the marginal cost function as c(x) = γ− psx, where p is the
price of energy and s is the reciprocal of aquifer storativity (p,s > 0). This parameter-
ization is based on laws of physics; it is a reasonable approximation for many aquifers
and most accurate for those with high hydraulic conductivity. It can also be viewed as a
second-order approximation to the cost function.

These assumptions pin down all control and state variables in equation 1 except for
three: {yi0,xi1,xi2}. How does regulatory stringency (ȳ) affect extraction in period 0,
before the regulation takes effect?

Proposition 1 (Green Paradox for groundwater extraction). Extraction is decreasing in

future extraction limits (i.e., increasing in future regulatory stringency):

dyi0

dȳ
=

ps
(1+ r)NB′′(yi0)

< 0. (4)

Proof. See Appendix Section A.2.

When future extraction limits decrease—i.e., future regulatory stringency tightens—
more groundwater is extracted before the regulation is implemented. Announcing future
regulation lowers the benefits that users will be able to obtain from the resource in the
future, so it becomes relatively valuable to extract more of the resource before the regu-
lation is implemented.15 The regulation makes a bigger difference (i) the more expensive
is energy p, since future regulation affects the water table depth, (ii) the smaller the stora-
tivity of the aquifer s−1, (iii) the lower the per-period interest rate r (i.e., the shorter the

14The time is takes for water to reach equilibrium after new recharge can be short in some settings. For
example, Maples et al. (2019) show in a modeled segment of the northern Central Valley aquifer that new
recharge can affect groundwater levels through pressure changes after 20-60 days.

15The regulation also lowers the costs of future extraction through higher resource stocks, but this does
not enter the decision of how much to extract in period 0. This decision weighs the marginal net benefits
of extraction now against the marginal effect on own pumping costs in later periods, which depends on
extraction in those periods but not on the resource stock itself. In other words, regulation carries both
benefits and costs, and both matter for determining whether the regulation is welfare-improving, but not for
determining how it affects extraction prior to implementation.
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length of time before the regulation is implemented), (iv) the fewer people that share the
aquifer N, and (v) the steeper the slope of marginal benefits.

Corollary 1 (No Green Paradox in full open access). When N is large, extraction is un-

affected by future extraction limits: limN→∞ dyi0/dȳ = 0.

Future regulation must affect resource rents in order to change extraction decisions,
and in full open access (N→∞) there are no rents. A Green Paradox can occur for mineral
resources because when users enjoy property rights, they are already taking potential
future benefits into account and restraining their extraction relative to a static analysis.
In full open access, users are already extracting every unit of groundwater for which
marginal benefits are less than marginal costs of extraction, so there is nowhere to go.
This result may be intuitive, but we have not yet seen it documented in the literature.

3.3 Investment opportunities allow an early decline in extraction

Our model so far is conditional on a given production function, allowing users to adjust
groundwater extraction only on the intensive margin. However, most of the realistic ways
that farmers might increase their groundwater extraction do not simply involve applying
more water to the same crops, holding everything else constant. Instead, they involve
capital investments that change the production function and result in extensive-margin
changes in extraction.

To capture this possibility, we now allow users an endogenous binary decision to
invest in a water-intensive production technology. The investment requires an initial cost
of Ki, known to user i, which then delivers greater marginal benefits for any amount of
extraction. To generate heterogeneity in the investment decision, we assume the initial
cost is a continuous random variable that follows a cumulative density function FK with
probability density function fK .16 This setup naturally describes investment in a perennial
crop, and it shares basic features with the decision to invest in well construction.17

16Heterogeneity in cost could arise from differences in prior knowledge and experience, land suitability,
or existing equipment and infrastructure. Of course the benefits may also be heterogeneous, but this would
add significant complexity to the model without adding insight. Our main objective here is to generate
heterogeneity in the net benefits of investment, and restricting heterogeneity to the cost variable is the
simplest way of doing so.

17Well construction is also an up-front investment that pays off over time, with payoffs increasing in
extraction. We omit an explicit model of the well construction decision because it would require allowing
the marginal cost function either to depend on yit (reflecting a cone of depression within each period) or to be
non-convex in xit (reflecting cost discontinuities as wells go dry and must be replaced). Either modification
would preclude closed-form solutions for our expressions of interest.
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To obtain closed-form expressions, we use a second-order approximation to the benefit
function and assume that the investment I increases marginal benefits by a constant β .
Potential benefits are B0(y) = ay− 1

2by2 if the user does not invest and BI(y) = (a +

β )y− 1
2by2 if they do, where a,b,β > 0.

Users face a two-stage problem. First, a user chooses whether to make the investment,
by comparing the present value of profits with and without the investment. Second, the
user chooses extraction quantities to maximize profits, as before, given the investment
decision. The problem is:

Invest if:
∞

∑
t=0

(1+ r)−t
[
BI(yI

it)− c(xI
it)y

I
it

]
−Ki ≥

∞

∑
t=0

(1+ r)−t
[
B0(y0

it)− c(x0
it)y

0
it

]
where yI

it , xI
it , y0

it , and x0
it are the solutions to the extraction problem in section 3.2, with

and without investment.
We first study (1) how investment changes current extraction (yI

i0− y0
i0) and (2) how

future regulation affects the probability of investment (dIi/dȳ). Then, the product of these
two effects shows (3) how future regulation affects extraction through the mechanism of
investment.

Lemma 1 (Effect of investment on extraction). Extraction in period 0 is greater with

investment than without it:

yI
i0− y0

i0 = β/b > 0. (5)

Proof. See Appendix Section A.3.

Investment increases period-0 extraction simply because it increases the marginal ben-
efits from extraction in period 0. Extracting more in period 0 does increase extraction
costs in the future, but this rate of increase is constant, so the marginal effect of period-0
extraction on future extraction costs does not depend on the investment.

Next, to study how regulation in period 1 affects investment, we define the return on
investment Θi as the net present value of the investment excluding the initial cost Ki. A
user invests if Θi ≥ Ki, so the greater the return on investment, the more likely a user is to
invest. The probability of investment is Ii = Pr(Θi ≥ Ki) = FK(Θi).

Proposition 2 (Effect of future regulation on probability of investment and resulting ex-
traction). Future extraction limits may either increase or decrease both the probability

of investment (equivalently, the share of users who invest) and the extraction that results
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directly from investment:

dIi

dȳ
= fK(Θi)β (1+ r)−1

[
1− ps

bN

]
(6)

while extraction as the result of investment is (yI
i0− y0

i0)(dIi/dȳ). When bN < ps, a de-

crease in extraction limits (i.e., an increase in regulatory stringency) raises the probability

of investment, as well as extraction as the result of investment (dIi/dȳ < 0). It lowers in-

vestment and resulting extraction when bN > ps (dIi/dȳ > 0), and it has no effect when

bN = ps (dIi/dȳ = 0).

Proof. For Equation 6, see Appendix Section A.4. The extension to extraction quantities
follows immediately by combining this equation with Lemma 1.

Equation 6 says that the effect of future extraction limits on investment depends on
the benefits and the costs of the additional allowed extraction in period 1. Rewriting as
dIi
dȳ = fK(Θi)β (1+ r)−1− fK(Θi)β (1+ r)−1 ps

bN , the first term represents the benefits of
this extraction. When more extraction is allowed, the marginal benefits of that extraction
are greater under investment, so the investment is more attractive. (Conversely, more
stringent extraction limits reduce the marginal benefits under investment, so investment is
less attractive.) The second term represents the costs of the additional extraction allowed
by the regulation. When more extraction is allowed in period 1, the marginal costs of
that extraction are greater under investment, making the investment less attractive. This
is because if the user invests, they extract more in period 0, which reduces the stock in
period 1.18

As for the effects of future regulation on extraction, this result shows that future ex-
traction limits affect period-0 extraction not just directly, as in Proposition 1, but also
through the channel of investment. If future regulation makes investment more attrac-
tive, then period-0 extraction increases, because we know from Lemma 1 that investment
increases extraction. If future regulation makes investment less attractive, the forgone
investment would have increased period-0 extraction, so period-0 extraction decreases as
the result of the investment opportunity.

3.4 Net effects of regulation are theoretically ambiguous

With the opportunity for investment, we have multiple simultaneous effects. As a result
of stricter future regulation, groundwater users will increase current extraction, exhibiting

18This term can also be expressed as the increase in period-0 extraction caused by the investment, mul-
tiplied by the marginal increase in period-1 extraction costs caused by the reduced stocks.
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a Green Paradox conditional on investment (Proposition 1). At the same time, they may
decrease investment in water-intensive production technologies, reducing extraction in
anticipation of the regulation – or alternatively increase it (Proposition 2). Considering
all these effects, we can summarize how future regulation affects extraction overall.

Proposition 3 (Net effect of future regulation on investment and extraction). The effect

of future regulation on current extraction, in total through all channels, is:

dyi0

dȳ
= (1+ r)−1

(
1+ fK(Θi)

β 2

b

)[
ξ
−1− ps

bN

]
(7)

and the directional effects of tightening future extraction limits on current investment and

extraction depend on the following conditions:
Condition Investment Net Extraction

bN < ps Rises
(
dI/dȳ < 0

)
Rises

(
dyi0/dȳ < 0

) [Green Paradox]

bN = ps No effect
(
dI/dȳ = 0

)
ps < bN < psξ

Falls
(
dI/dȳ > 0

) [Mixed results]

bN = psξ No effect
(
dyi0/dȳ = 0

)
bN > psξ Falls

(
dyi0/dȳ > 0

)
[Early decline]

where ξ :=
(

fK(Θi)
β 2

b

)−1
+1.

Proof. Results for investment are restated from Proposition 2. For extraction, we write
current extraction as a function of the regulation through both direct and indirect channels:
yi0 = yi0(ȳ, Ii(ȳ)). Totally differentiating with respect to ȳ gives

dyi0

dȳ
=

∂yi0

∂ ȳ
+
(
yI

i0− y0
i0
)dIi

dȳ
.

The first term is given in Proposition 1 (i.e., ∂yi0/∂ ȳ is dyi0/dȳ conditional on the invest-
ment decision) and the second is given in Proposition 2. The remaining algebra is given
in Appendix Section A.5.

The results show three main regimes (plus two edge cases):

1. With few users or flat marginal benefits (small bN), investment can actually exac-
erbate the Green Paradox. The regulation increases overall extraction in period 0,
both directly, conditional on investment decisions (Proposition 1), and indirectly,
through increased investment in the technology that makes extraction more attrac-
tive.
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2. In full open access or with steep marginal benefits (large bN), regulation reduces
investment and extraction as a result, and this effect outweighs any Green Para-
dox tendency to increase extraction conditional on investment. In this case, future
regulation leads to an anticipatory decline in extraction overall.

3. In between, there is an intermediate range of values of bN for which regulation
reduces investment while also increasing extraction. Extraction falls because of
reduced investment, but not by enough to outweigh the Green Paradox increase
conditional on investment.

However, these conditions do not guarantee that the effects are large; a high value of the
discount rate r can make Equation 7 arbitrarily small.

4 Data and Descriptive Statistics

To take our theory to data, we assemble measures of groundwater extraction and water-
intensive investment for all agricultural land in California subject to SGMA. For invest-
ment, the outcomes we can observe are the construction of agricultural wells (from well
completion reports) and the conversion of land to perennial crops such as orchards and
vineyards (from a satellite-based land use data product). For extraction, we form an index
of water use by combining the same satellite data on crop choice with scientific estimates
of water use by crop. We also assemble several estimates of expected future groundwa-
ter regulations (for the treatment variable) and surface water deliveries (for an important
control variable).

Summary statistics are reported in Table 1. The full sample consists of yearly obser-
vations during 1993-2022 of all land within GSAs subject to SGMA (i.e., designated as
medium or high priority). Each observation represents a quarter-quarter section (about 40
acres) in the Public Land Survey System.19 The paired sample consists of observations
from the full sample that fall within 15 km of the boundary between a pair of neighboring
groundwater subbasins, with all such subbasin pairs stacked into one dataset. We motivate
this sample in Section 5.1.

19We aggregate spatial variables in this way in order to reduce noise and computation time without losing
much information. Hagerty (2021) shows that this division consistently keeps together common units of
land use.
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Table 1: Descriptive Statistics

Observations Mean Std. Dev.
Full Sample
Future reductions, mean of 3 measures (AF/acre) 22,137,750 0.078 0.13
Projected reduction, from GSPs (AF/acre) 22,137,750 0.054 0.15
Reported overdraft, from GSPs (AF/acre) 22,137,750 0.085 0.18
Modeled overdraft, from C2VSim (AF/acre) 22,137,750 0.094 0.17
Crop water intensity (AF/acre) 12,217,269 2.2 2.1
New perennials planted (share of land) 11,408,667 0.0067 0.18
New wells per square mile 24,447,150 0.03 2.6
Stock of perennials planted (share of land) 12,223,572 0.14 0.35
Stock of wells per square mile 24,447,150 0.95 32
Surface water deliveries (AF/acre) 24,447,150 1.3 2.3
Paired Sample
Future reductions, mean of 3 measures (AF/acre) 13,924,988 0.12 0.16
Projected reduction, from GSPs (AF/acre) 13,924,988 0.086 0.19
Reported overdraft, from GSPs (AF/acre) 13,924,988 0.13 0.22
Modeled overdraft, from C2VSim (AF/acre) 13,924,988 0.15 0.19
Crop water intensity (AF/acre) 7,202,578 2.9 1.8
New perennials planted (share of land) 6,722,406 0.011 0.23
New wells per square mile 13,924,988 0.043 3.8
Stock of perennials planted (share of land) 7,202,578 0.24 0.43
Stock of wells per square mile 13,924,988 1.3 46
Surface water deliveries (AF/acre) 13,924,988 1.4 2.2
Notes: This table reports units, observations, means, and standard deviations for the full and paired samples.
The full sample includes all land within GSAs as yearly observations of quarter-quarter sections. The
paired sample is the subset of observations within 15 km of the boundary between pairs of neighboring
groundwater subbasins, with all such pairs stacked into one dataset. The paired sample excludes land

within 1.14 km (i.e., 1 mile ×
√

(2)
2 ) of the boundary to avoid classifying wells to the wrong side of the

border; well construction data is rounded to the nearest mile for anonymity. Water is measured in acre-feet
(AF). Dataset runs 1993-2022; crop water intensity and perennials have fewer observations because they
are derived from remote sensing data available 2007-2021. New perennials planted is the first difference of
the stock of perennials planted, so it is not calculable for 2007. Measures of future pumping reductions are
inherently cross-sectional but repeated for each year of the panel.
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4.1 Future Extraction Reductions Under SGMA

Our ideal treatment variable would capture farmers’ beliefs of the degree to which they
will be required to reduce their groundwater pumping in order to achieve the basin’s sus-
tainability goals. Because beliefs are unobservable, we proxy for them by assembling
three different measures of the likely future reductions in extraction that will be required
in each GSA. Given the long time horizon for sustainability and the changing viability
of different management options, there remains meaningful uncertainty about the true ex-
tent of regulatory stringency that farmers will realize. Beliefs about future stringency may
be formed based on local information (e.g., if there is a schedule to gradually transition
pumpers to sustainable levels) and expectations about the viability of proposed supply-
side projects (e.g., the potential for artificial recharge and surface water purchases to offset
groundwater cutbacks). While imperfect, our three proxies capture the best publicly avail-
able information about that future stringency, information that farmers likely use to form
their beliefs.20

Our first measure, which we refer to as “modeled overdraft,” comes from the 1.0 ver-
sion of the Fine Grid California Central Valley Groundwater-Surface Water Simulation
Model (C2VSim), developed by DWR. C2VSim is one of three major statewide hydro-
logical models widely used in water resource planning in California, and the only one that
is publicly available. We run C2VSim using default parameters and obtain estimates of
the yearly volumetric change in groundwater storage for each year of the 25-year period
preceding SGMA (1992-2015).21 We aggregate gridded values to GSAs by summing over
all model grid cells whose centroid falls within each GSA boundary, and take an average
across the years of this historical period.

Our other two measures are assembled from Groundwater Sustainability Plans (GSPs)
submitted by GSAs to the state. GSPs are multi-thousand-page reports that estimate and
report overdraft as well as current and future pumping. One measure, which we refer to as
“reported overdraft,” is the volume of annual overdraft reported directly in the executive
summary of each GSP.22 This measure is an easily observable headline result in each GSP.
The other, which we refer to as “projected reduction,” is the difference in annual ground-

20Even after farmers have updated their beliefs about future regulatory stringency, uncertainty in GSA
plans to achieve sustainability may result in the formation of beliefs that do not accurately represent the true
amount of regulatory stringency that farmers will face under the policy. This potential measurement error,
which we discuss more later, is one possible explanation for our results.

21Change in storage and overdraft are conceptually very similar; however one incorporates lateral flow.
Overdraft tells us the difference between pumping (out) and recharge (in), net of lateral flows.

22Each plan contains several water budgets that are based on different subsets of historical data. The
plans state their preferred water budget and corresponding preferred overdraft estimate, which we use.
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water extraction between “current” and “future” water budgets. Projected reduction can
differ from reported overdraft because many GSPs also project changes in groundwater
supply. For example, several GSPs contain plans for purchasing additional surface water
or acquiring rights to excess winter flood flows to perform artificial groundwater recharge
(Hanak et al., 2020). To the extent that farmers’ beliefs about future regulatory stringency
depend on these supply-side management strategies, “projected reduction” may serve as
a good proxy.

For each of these three variables, we divide the GSA-level volumes by the area of
cropland in the GSA to obtain a per-acre measure of estimated future pumping reductions
for agriculture. By doing so, we assume that future reductions in extraction will be borne
exclusively by the agricultural sector and not by municipal users. This is a reasonable
approximation, since agriculture is responsible for the vast majority of groundwater ex-
traction (in many GSAs, the extent of overdraft alone exceeds total municipal use) and the
value of water tends to be much higher in residential and industrial uses. We also assume
that pumping reductions will be divided evenly across all agricultural land in the GSA. In
the absence of more specific regulatory plans, this is a reasonable assumption because of
strong pre-existing allocation norms; surface water districts in California almost always
allocate reductions in irrigation water equally across cropland area (Hagerty, 2021). We
also censor negative values at zero. Negative values mean that a GSA has room to ex-
tract more groundwater each year without suffering overdraft. Because our focus is on
future reductions in extraction, we only care about the extent of overdraft, not the extent
of resource under-utilization.

Our final treatment variable, shown in Figure 2, averages across the per-acre versions
of these three proxies, although we find our results to be robust to using each measure
alone. In some cases, multiple contiguous GSAs joined together to collaboratively de-
velop one GSP; we combine and treat them as one unit in our analysis. We also exclude
GSAs that exclusively or primarily cover cities. The subset of groundwater basins that
reside in the Central Valley form the basis of our full-sample analysis and consist of both
critically and non-critically overdrafted basins. The estimated reduction in groundwater
extraction under SGMA ranges from 0 to 1.1 acre-feet per acre (AF/acre)23 and averages
0.12 AF/acre. For context, California crops like fruits, vegetables, and nuts can use 1.5 to
4 AF/acre of water per year depending on the crop.

23An acre-foot is the volume of water that would cover one acre of land to a depth of one foot.
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Figure 2: Spatial Variation in Regulatory Stringency

Note: The map shows average expected reduction in groundwater
pumping required under SGMA in acre-feet per acre (AF/acre) for
basins in the Central Valley. This average reduction is estimated by
averaging across the three treatment variables: reported overdraft, pro-
jected reduction, and modeled overdraft.
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Figure 3: Land Use, 2007-2021
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Note: Data come from USDA’s Cropland Data Layer. The horizontal line marks the
passage of SGMA.

4.2 Investment in Perennial Crops

Our first measure of water-intensive investment is the planting of new perennial crops.
Perennials, such as fruit and nut orchards or vineyards, require a large up-front fixed cost
that pays back with sufficient future irrigation water and not otherwise.

We derive perennial plantings from land use data consisting of annual information
on crops grown in the state at a 30-meter grid resolution spanning 2007-2021. We use
the USDA’s Cropland Data Layer, which is a remotely sensed data product of 119 dis-
tinct land-use classifications. We aggregate pixels to fields (quarter-quarter sections as
described above) according to the modal land use. We classify land use into six cate-
gories: annual crops, perennial crops, fallowed/idled land, grassland, nature, and devel-
oped space. Figure 3 plots trends in these land use categories over time.

Throughout our sample, we observe a trend of annual acreage declining and peren-
nial acreage increasing. This trend is visible in years prior to the passing of the SGMA
legislation. The drop in annuals appears to have leveled off in the initial years after the
announcement of the policy before continuing a downward trend in recent years. Peren-
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nial acreage has steadily increased since 2010, roughly doubling over a 10 year period
with no visible changes in the trajectory in the years after SGMA. In fact, perennial crops
have increased nearly 50% since SGMA passed in 2014.

For our outcome variable of new perennial plantings, we take the first difference of
a binary indicator for whether each field is planted with perennials in a given year. This
first difference may amplify noise from classification error, so we attempt to reduce error
by applying a data correction procedure that leverages the panel structure of the data.24

Overall, about 1% of fields are newly planted with perennials in each year of our sample.

4.3 Investment in Agricultural Wells

Our second measure of water-intensive investment is new agricultural well construction,
another long-term investment decision that may be affected by expected future water sup-
ply. We use the Well Completion Reports from the Department of Water Resources, which
represent the universe of agricultural wells drilled in California. The data run through
2022 and extend back many decades, but we use data beginning in 1993 for congruence
with our other variables. The dataset includes information on each well’s location, drilled
depth, and intended use.

Because the data source reports only where wells were constructed, not where they
were not, we form a consistent sample frame by joining well observations to the farm
fields we defined above for land use observations. Many (but not all) well locations are
anonymized by rounding to the nearest node in a one-square-mile grid. This means that
some of our fields have an implausible number of wells while most others have none, but
this is not a problem because all analysis smooths over fields within each basin. The most
concerning type of measurement error would be misclassification of a well into the wrong
subbasin. We eliminate this error in the paired sample by excluding fields that may be
misclassified: those within 1 mile ×

√
2

2 = 1.14 km of the boundary.
Our final variable is the number of new wells per year per square mile, which we

construct by dividing the number of new wells in a field by the square mileage of the
field. In all analysis, we weight by land area of field observations, to ensure estimates
are geographically representative and do not depend on the method of aggregation. The
mean number of new wells per year in our full sample is 0.03 per square mile. Taking
a cumulative sum of all new wells through the observed year for each field, the mean

24Perennial crops by definition must exist for more than one year, so for each field, we examine sliding
five-year windows. If the land use code is identical in years 1, 2, 4, and 5, but different in year 3 – and
either the year-3 value is a perennial crop and the surrounding years are not, or vice versa – we correct the
year-3 value to be the same as the surrounding years.
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number of total wells is 0.95 per square mile.

4.4 Water Use Intensity as a Proxy for Extraction

To proxy for groundwater extraction, we create an index of crop water use intensity, which
estimates the volume of irrigation water used at each field.25 To form this index, we com-
bine the land use data above with estimates of crop-specific water use by fine geographic
regions and year, provided by DWR and described further in Hagerty (2021). We join
each field to the region that contains it and impute the water use estimate for the crop
observed at that field.

Our goal is to measure groundwater use, but total water use includes both surface
water and groundwater. This is not a problem for our difference-in-differences analysis
so long as any post-SGMA changes in surface water quantities are uncorrelated with ex-
pected future reductions in groundwater extraction under SGMA. In case this is not true,
we also control for surface water supplies using data from Hagerty (2021). This dataset in-
cludes annual volumes of surface water deliveries from the Central Valley Project (CVP),
State Water Project (SWP), and Lower Colorado operations, and estimated diversions on
the basis of surface water rights, spanning 1993-2022. On average, surface water use
amounts to 1.3 AF/acre, or 62% of total applied water.

Although both our water use and perennial investment outcome variables are derived
from the same underlying land use data, they reflect distinct types of variation and repre-
sent conceptually different outcomes. The key is that annual crops are common and can
be easily adjusted from year to year, so they are a primary margin with which farmers
can adjust their water use from year to year (Bruno et al., 2024). The water use index
therefore captures a broader, more flexible, and shorter-term set of possible adjustments:
switching among annual crops and switching between annuals and fallow/idle land (in
addition to the rarer movements in and out of perennials). Perennial crops use more water
than annual crops on average, but there is more variation in water use across annuals than
between annuals and perennials.26 So we interpret the water use index as a measure of
contemporaneous groundwater extraction, and new perennial plantings as a measure of
forward-looking investment.

25While satellite-based measures of changes in groundwater reserves do exist, these products are far too
coarse for use in our analysis.

26Annual crop water requirements range from 1.7 AF/acre for tomatoes and other truck crops to 4.5
AF/acre for alfalfa and rice.
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5 Empirical Approach

5.1 Research Design: Paired Difference-in-Difference

To measure the effects of future reductions in groundwater extraction, we leverage the
fact that SGMA has created substantial variation in future regulatory stringency across
geography in California. Our basic approach is to compare outcomes across different
GSAs that are subject to greater or lesser future pumping reductions. However, a simple
analysis that pools together all GSAs into a single comparison raises immediate problems.
Regions facing greater reductions under SGMA are very different from regions facing
fewer (or no) reductions. Figure 1 illustrates this well: basins deemed to be in “critical
overdraft” largely reside in the southern half of the Central Valley, where weather and
growing conditions are quite different from regions in the northern half.

A difference-in-difference analysis would help by subtracting out baseline trends, but
even this relies on a parallel trends assumption that is difficult to justify from institutional
knowledge. Farms in the southern Central Valley have been planting perennials and de-
pleting groundwater at a faster rate than those further north, so the post-SGMA trajectory
of northern GSAs is unlikely to be a plausible counterfactual for that of southern GSAs.
We illustrate the challenges of a full-sample analysis in Figure 4, which plots our three
outcome variables over time by critical overdraft status, a coarse binary classification that
correlates with future pumping reductions. Not only are critically overdrafted basins quite
different from others – for example, they grow considerably more water-intensive crops –
they also fail to exhibit parallel trends in the pre-treatment period (prior to 2014).

Instead, we use a paired difference-in-difference approach. Rather than comparing
each GSA to all other GSAs in the state, we identify the impacts of impending ground-
water regulation by comparing each GSA to other neighboring GSAs, before and after
the restrictions became known. Neighboring GSAs often still have variation in expected
future groundwater restrictions, yet they are more similar to each other in other ways. A
paired design requires a parallel trends assumption that is better justified by the institu-
tional context. It requires only that neighboring GSAs would have similar responses to
common shocks absent SGMA, rather than requiring the same of all GSAs in the state.

An alternative research design in this setting might be a geographic regression discon-
tinuity (RD) at the boundaries between neighboring GSAs. The main reason we prefer a
difference-in-difference approach is that many boundaries of GSAs coincide with bound-
aries of water districts, which supply surface water and have been shown to introduce
discontinuous effects on land use and agricultural production (Hagerty, 2021). If we es-
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Figure 4: Investment and Extraction Outcomes in Full Sample

A. New Perennial Plantings

−0.025

0.000

0.025

2010 2013 2016 2019
Year

C
ha

ng
e 

in
 s

ha
re

 o
f l

an
d

In critical overdraft

Not in critical overdraft

B. New Well Construction

0.00

0.05

0.10

2000 2010 2020
Year

N
ew

 w
el

ls
 p

er
 s

qu
ar

e 
m

ile

In critical overdraft

Not in critical overdraft

C. Water Use Intensity

2.0

2.5

3.0

3.5

2010 2015 2020
Year

W
at

er
 r

eq
ui

re
m

en
ts

 (
A

F
/a

cr
e)

In critical overdraft

Not in critical overdraft

Note: Graphs plot the three outcome variables by critical overdraft designation using
the full sample – all agricultural land in GSAs affected by SGMA. Years shaded in gray
denote the time between passage of SGMA and release of GSPs; the “pre-treatment”
period is before the gray period and the “post-treatment” period is after it.
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timated a geographic RD in the post-SGMA period, it would likely include bias from
these other borders. Instead, the difference-in-difference design accounts for this bias,
by allowing us to ask how much the spatial difference across GSA boundaries changed
post-SGMA relative to the pre-SGMA period.

Still, we adopt some aspects of an RD design: we limit the sample to observations
near the boundary, we control for distance to the boundary, and we apply triangular ker-
nel weights that put greater weight on areas closer to the boundary. We do so to deal with
another important concern: Future restrictions on groundwater extraction are determined
not randomly but by amount of overdraft. Regions with greater overdraft tend to have
lower groundwater levels, so they are likely to respond to economic shocks differently
than would regions with less overdraft. However, GSA boundaries represent only ad-
ministrative boundaries, not hydrological boundaries, so underground groundwater levels
equalize across GSA boundaries. Two neighboring GSAs on average might have very dif-
ferent groundwater levels (and therefore face different future restrictions), but close to the
boundary between them, groundwater levels (and therefore the cost of extraction) will be
nearly identical.27 As a result, areas immediately around a GSA boundary have different
values of the treatment variable (future restrictions change discretely at the boundary and
are likely to apply equally throughout each GSA) but share more similar environmental
conditions than areas further away from the boundary.28

As a result, our research design could be considered a form of a difference-in-discontinuities
design, following Grembi et al. (2016) and Butts (2023). However, econometric methods
are not yet well-developed for this design, especially when observations are available for
multiple pre- and post-treatment time periods. Specifically, we are unable to implement

27This will not be true if the GSA boundaries are drawn to coincide with physical barriers that restrict
underground flow. This is why, as mentioned in Section 2, we do not use GSA comparisons across bound-
aries of basins, which are defined by hydrogeological features. We use only comparisons across boundaries
of subbasins, which are defined for administrative convenience and have no hydrogeological meaning. The
exception is that in the Central Valley we combine the Sacramento Valley and San Joaquin Valley basins,
which are connected underground but defined separately because of their surface hydrology.

28One limitation of our design is that it provides estimates in equilibrium, including spillover effects.
One type of spillover may arise from the fact that regulating a GSA affects groundwater levels beyond its
boundaries. Farmers in a one GSA may respond not only to their own future extraction restrictions and the
future benefits of their own GSA’s regulation, but also to the future benefits of regulation in neighboring
GSAs. This type of spillover is likely to be small, because comparisons near the boundary hold constant
the future benefits (since groundwater levels equalize at the boundary) and isolate differences in future
extraction restrictions. Another type of spillover may arise from substitution of investments away from
more stringently regulated areas and toward less stringently regulated areas. This spillover is also likely
to be small, since nearly all parts of the Central Valley face some level of future pumping restrictions, and
most farmland is held by family-owned operations that rarely relocate or purchase non-contiguous land. A
research design based on close spatial comparisons always carries the risk of spillover bias, but we believe
this risk is outweighed by the benefits of clean identification.
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the nonparametric bandwidth selection and statistical inference methods recommended
by Cattaneo et al. (2019). Instead, we conduct sensitivity checks around the sample band-
width and kernel weights and find that results are insensitive to these choices.

To form the paired sample for our main analysis, we find all pairs of contiguous
groundwater subbasins in California, restrict the full sample to observations that fall
within 15 km of the boundary between each pair of neighboring subbasins, and then stack
observations from all such pairs into one dataset. The paired sample is therefore both
restricted and repeated; many observations appear multiple times as part of distinct pair
comparisons. The radius of 15 km is chosen to be large enough to include a substantial
mass of observations on both sides of the boundary while small enough to ensure they are
similar; we show that results are insensitive to this specific choice.

5.2 Timing of Treatment

To select time periods for the before-after comparison, we want to isolate periods that are
completely unaffected by SGMA, and those during which the future pumping restrictions
are clear. The pre-treatment period is reasonably straightforward, since SGMA passed
in September 2014. For the outcome variables of new perennial plantings and water
use intensity, we consider 2014 to be the last pre-treatment year. These two variables
are derived from observations of land use, which would not have responded late in the
calendar year, since planting decisions are made in early spring. For well construction,
we consider 2013 to be the last pre-treatment year, since wells are drilled at discrete times,
so decisions during 2014 could have been affected by the legislative process in that year.

We define the post-treatment period as only starting in 2020. We exclude the inter-
vening years of 2015-19 from both pre- and post-treatment periods and consider them
to be a “coordination” or “middle” period. The reason is that the post-treatment period
should consist of a time during which we can be confident that farmers have changed their
beliefs about the future availability of water under SGMA. The years immediately after
SGMA do not fit this description: The deadline for GSAs to form was June 30, 2017, so
before then, farmers did not even know what GSA they would be in. It was not until 2018
that sustainability plans were drafted and public hearings held. However, after this point,
GSAs undertook significant community outreach and engagement.29 By the time each
GSA published a Notice of Planned Adoption of their sustainability plans – late 2019 for
almost all GSAs in our dataset – it is likely that landowners successfully updated their

29Community outreach and engagement were codified into the law under SGMA. In fact, GSAs were
required to record their public outreach efforts. Stakeholder engagement included the dissemination of
resources regarding SGMA implementation and several public comment hearings at the local level.
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beliefs about changes to future pumping.
Because the timing of our treatment variable is simultaneous across all units, we avoid

many of the problems identified in the recent literature on difference-in-differences (Baker
et al., 2021).

5.3 Regression Model

To build intuition for our main regression specification, consider a simple scenario in
which two GSAs g in neighboring subbasins differ in expected future pumping reductions.
The treatment variable Tg takes a value of 1 for the GSA facing greater cutbacks and 0
for the other. The timing variables Midt and Postt equal 1 in the coordination period
(after SGMA was announced in 2014 but before GSPs were finalized in 2019) and the
post-treatment period (after farmers have had a chance to update their beliefs about future
pumping restrictions), respectively. If we regress an outcome Yigt for field i on these
variables and their interactions:

Yigt = γTg +λ1Midt +σ1(Tg×Midt)+λ2Postt +σ2(Tg×Postt)+ εigt (8)

the coefficient on Tg×Postt captures the additional effect of being in the GSA with greater
future pumping restrictions (relative to its neighbor) in the post-treatment period (relative
to the pre-treatment period, excluding the coordination period).

Our main specification stacks together all 73 pairs of neighboring subbasins by using
the paired sample. It pools the coefficient of interest β across pairs p:

Yigpst = γTgp +δ (Tgp×Midt)+β (Tgp×Postt)+αpst +ω
′Xigpst + εigpst . (9)

As described above, the baseline sample is restricted to observations within 15 km of
the boundary of each subbasin pair. The variable αpst represents year × subbasin pair
× boundary-segment fixed effects. These fixed effects control for time-invariant subbasin
pair characteristics as well as annual shocks shared by GSAs on both sides of the subbasin
boundary. We split each boundary pair into 5-km pieces we call boundary segments s to
ensure the regression is comparing observations that are near each other in both perpen-
dicular and parallel dimensions. The fixed effects thus ensure our coefficient of interest is
identified by comparing fields only directly across a subbasin boundary from each other.

We control for surface water supplies to account for the fact that the treatment variable
is likely to be correlated with post-SGMA shocks to surface water quantities. Our covari-
ates Xigpst include surface water supplies in both the same year and the previous year, to
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capture the recent past of any decisions that affect the outcome variables, since investment
and extraction decisions are made throughout the year.30 We also include interactions of
these surface water variables with a full set of year indicators, to flexibly allow the effects
of surface water across GSAs to vary separately for each year in the data.

In the spirit of an RD design, we also control for perpendicular distance to the subbasin
boundary, and interact this distance with Tgp to estimate separate terms on each side of
the boundary. Observations are weighted both by field acres (to obtain estimates that
are representative of land area) and by a triangular kernel in distance to the boundary
(following Cattaneo et al. (2019)). Standard errors are clustered by the unit of treatment
– GSA, or sets of GSAs that submit a joint GSP – to account for both serial and spatial
correlation, as well as the double-counting of observations across subbasin pairs.31

To show effects over time, we also deploy an event study framework that estimates
separate effects for each year of our data:

Yigpst = γTgp + ∑
t 6=2014

θtTgp +αpst +ω
′Xigpst + εigpt . (10)

relative to an excluded year of 2014 (for new perennial plantings and water use intensity)
or 2013 (for well construction).

In our baseline specification for both event studies and the pooled regression, we use a
simple binary indicator for the treatment variable Tgp. It measures the effect of being in a
subbasin that faces greater future pumping restrictions than its neighbor, on average across
all pairs of neighboring subbasins. This effect tells us about the direction of response,
but to interpret it quantitatively, we also need to know the average difference in future
pumping reductions between subbasin pairs in the paired sample: 0.12 AF/acre. We also
estimate an alternative specification that uses the raw estimated value of future pumping
reductions as a continuous treatment variable.

Identification in our setting requires that in the absence of the sustainability mandate,
differences in outcomes between the treated and counterfactual comparison groups would
have remained constant over time. We lean on the panel of pre-treatment data to test for
differences in outcomes between treated and control units in years prior to SGMA. The
failure to identify a difference in the pre-treatment years provides evidence to support the

30Hadachek et al. (2024) show that well construction does not respond to surface water supplies more
than one year later.

31This unit of treatment is thus equivalent to subbasins, except for a few cases in which one subbasin has
multiple GSAs that have not chosen to submit a joint GSP. We cannot cluster standard errors at the basin
level since the Central Valley consists of only two basins: the Sacramento Valley basin and the San Joaquin
Valley basin.
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assumption that in the absence of the policy, treatment and comparison groups would have
trended similarly.

Despite empirical evidence for the absence of pre-trends, it could still be the case that
GSAs subject to greater pumping restrictions would have trended differently after 2014.
The post-treatment years in our sample mark a tumultuous time for California farmers,
many of whom produce goods for international buyers and suffered losses from retaliatory
tariffs, port congestion, and continuing supply chain issues. While many of these shocks
may have differential effects on growers of different crop types, they are unlikely to be
correlated with GSA-level variation in overdraft within neighboring subbasin pairs.

A final concern relates to farmer expectations about the potential for supply-side
strategies to avert future pumping restrictions, which could be correlated with both treat-
ment and outcomes. Differences in farmers’ expectations about the enforcement of SGMA,
or their personal realization of the regulation, may change discontinuously at the border,
affecting interpretation of results. However, to the extent that these differences exist, they
are likely small relative to the first-order differences in regulatory stringency and unlikely
to change over time.

6 Results

We present results for three outcome variables: new perennial plantings and new well con-
struction as measures of investment, and crop water intensity as a proxy for groundwater
extraction.

6.1 New Perennial Planting

To measure whether future regulation leads farmers to increase or decrease their rate
of investment in water-intensive capital, we first consider the rate of new plantings of
perennial crops, such as fruit and nut orchards and vineyards.

To start, we assess trends in new perennials in the pre-treatment period. Figure 5
shows that in the paired sample – unlike in the full sample – new perennial plantings
tracked each other very closely prior to 2014. Not only do they appear to move in par-
allel, they also closely match in levels. Since the “fewer” and “more” groups behave so
similarly prior to SGMA, it increases confidence that they would have also behaved sim-
ilarly afterward without SGMA – and that the parallel trends assumption is much more
plausible in the paired sample than the full sample (Figure 4).

Next, we examine how new perennial plantings changed in the post-treatment period,
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Figure 5: New Perennial Plantings by Treatment Status, Paired Sample

Note: Figure plots the annual change in the share of fields planted in perennial crops in the paired
sample, which stacks all neighboring subbasins and includes only observations within 15 km of
their boundary. “More” and “Fewer” are within these pairs, relative to neighbors in the same year.
Gray shading indicates the “coordination” period between when SGMA was passed and when
local sustainability plans were published. Means weighted by area.

Figure 6: Effect of Greater Future Reductions on New Perennial Plantings

Note: Figure plots year-specific coefficients from the estimation of Equation 10. Each coefficient
represents the difference in new perennial plantings between GSAs facing more or fewer future
pumping restrictions (within each pair of neighboring subbasins) in that year, minus the same
difference in 2014, the last year of planting decisions before SGMA became law. Estimates also
adjust for surface water supplies and distance to the boundary and are weighted by area and a
triangular kernel in distance to boundary. Sample is limited to fields within 15 km of the boundary.
Vertical bars denote 95% confidence intervals. Standard errors clustered by GSA.
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after SGMA passed and future pumping reductions became clearer. The answer appears
obvious from the time series plot in Figure 5: there was no change. GSAs facing fewer
vs. more future pumping reductions continued to plant perennials at the same rate as each
other in the post-treatment period just as much as in the pre-treatment period. One concern
might be whether the “more” and “fewer” groups really do have meaningful differences
in the treatment variable. But despite the similarity in the outcome variable, the average
difference in future pumping reductions is 0.12 AF/acre – roughly the same as the average
value of future reductions across the paired sample as a whole.

To confirm this apparent result, we proceed to showing results from a formal event
study: the effects over time estimated from equation 10. Figure 6 plots the year-specific
average effect of being in the GSA with “more reductions” between each neighboring
pair, relative to 2014, the last pre-treatment year. This figure plots the same data as Figure
5, but it shows differences between the two groups in each year net of their 2014 dif-
ference, controls for surface water supplies and distance to subbasin boundary, and adds
confidence intervals. Since farmland near the boundary is very similar other than the
change in expected future pumping restrictions, we can interpret any differences in new
perennial plantings relative to 2014 as the effect of being in a GSA with greater future
regulation.

In each of the five years preceding the passage of SGMA, we fail to reject that the
difference in average new perennial plantings across all subbasin pairs is statistically dif-
ferent from that in 2014, again lending confidence to the identifying assumption. How-
ever, the effects of greater future pumping reductions in each of the two years in the
post-treatment period similarly show no statistical difference in new perennial plantings
relative to 2014. These results suggest that farmers are not making anticipatory adjust-
ments in new perennial plantings as a result of SGMA in these early years.

6.2 New Well Construction

We next turn to a second measure of water-intensive capital investments: new construction
of irrigation wells. In Figure 7, we report trends in new wells constructed per square mile
over time by treatment status in the paired sample, focusing only on farms within 15km
of the boundary between agencies. For this outcome variable, we can lean on a longer
panel of pre-treatment data to investigate the parallel trends assumption. We again see
that subbasins that face more and fewer future pumping reductions under SGMA closely
tracked each other in the pre-treatment period – as well as in the post-treatment period.

Turning to the event study, Figure 8 plots coefficient estimates from the estimation of
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Figure 7: New Well Construction by Treatment Status, Paired Sample

Note: Figure plots the mean annual count of new wells constructed per unit area in the paired
sample, which stacks all neighboring subbasins and includes only observations within 15 km of
their boundary. “More” and “Fewer” are within these pairs, relative to neighbors in the same year.
Gray shading indicates the “coordination” period between when SGMA was passed and when
local sustainability plans were published. Means weighted by area.

Figure 8: Effect of Greater Future Reductions on New Well Construction

Note: Figure plots year-specific coefficients from the estimation of Equation 10. Each coefficient
represents the difference in new well construction between GSAs facing more or fewer future
pumping restrictions (within each pair of neighboring subbasins) in that year, minus the same
difference in 2013, the last full year before SGMA became law. Estimates also adjust for surface
water supplies and distance to the boundary and are weighted by area and a triangular kernel in
distance to boundary. Sample is limited to fields within 15 km of the boundary. Vertical bars
denote 95% confidence intervals. Standard errors clustered by GSA.
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equation 10 with new well construction as the outcome variable. With few exceptions, we
cannot reject that the differences in new well construction between subbasin pairs are sig-
nificantly different from that in 2013. The estimated effects in the coordination years of
2014-2019 and the post-treatment years of 2020-2022 similarly show no statistical differ-
ence in new well construction relative to 2014, suggesting that farmers are not responding
to greater future pumping restrictions by investing in new irrigation wells. One might be
concerned that GSP plans could be placing restrictions on new well construction, thus
explaining why we see no changes in well drilling relative to 2013. However, little co-
ordination exists between local well-permitting entities and GSAs. In March 2022, the
governor issued Executive Order N-7-22 to remedy this, requiring GSAs to provide ver-
ification that proposed new well construction would be consistent with their GSP, thus
potentially affecting permit issuance for new wells. Our sample ends prior to this change.

6.3 Water Use Intensity

Finally, to measure whether future regulation leads farmers to increase or decrease their
rate of groundwater extraction before the regulation binds, we turn to our index of crop
water use intensity. We again first plot changes in water use intensity between basins
facings greater and fewer future pumping reductions in Figure 9 and then show coeffi-
cient estimates from the estimation of equation 10, expressed relative to 2014, in Figure
10. Figure 9 suggests that basins trended similarly prior to the announcement of SGMA,
with regions that were facing more pumping restrictions on average having higher water
requirements. Figure 10 shows formally that there were no statistically significant differ-
ences in crop water use intensity before or after the announcement of the regulation. We
fail to find evidence that farmers are altering water use in anticipation of future ground-
water restrictions.

6.4 Pooled Regressions

To quantify our results, we report estimates of equation 9 in Table 2. These regressions
pool together years in the pre- and post-treatment years, providing an overall average
difference-in-difference estimate. They potentially improve statistical power over any
single year’s estimate in the event study.

Looking at the coefficient of interest in the top row, estimates for all variables are
small, with standard errors that cannot reject a zero effect. For new perennial plantings,
the point estimate is 0.3 percentage points per year, which is relatively small compared
with the sample mean value of new perennial plantings (1.1 percentage points per year).
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Figure 9: Water Use Intensity by Treatment Status, Paired Sample

Note: Figure plots mean water-use intensity in the paired sample, which stacks all neighboring
subbasins and includes only observations within 15 km of their boundary. “More” and “Fewer”
are within these pairs, relative to neighbors in the same year. Water-use intensity is estimated by
combining remote sensing land use data with scientific estimates of crop-specific water use. Gray
shading indicates the “coordination” period between when SGMA was passed and when local
sustainability plans were published. Means weighted by area.

Figure 10: Effect of Greater Future Reductions on Water Use Intensity

Note: Figure plots year-specific coefficients from the estimation of Equation 10. Each coefficient
represents the difference in water-use intensity between GSAs facing more or fewer future pump-
ing restrictions (within each pair of neighboring subbasins) in that year, minus the same difference
in 2014, the last year of planting decisions before SGMA became law. Estimates also adjust for
surface water supplies and distance to the boundary and are weighted by area and a triangular
kernel in distance to boundary. Sample is limited to fields within 15 km of the boundary. Vertical
bars denote 95% confidence intervals. Standard errors clustered by GSA.37



Table 2: Paired Difference-in-Difference Regression Estimates

New Perennial
Plantings
(share)

New Well
Construction
(per sq. mile)

Water Use
Intensity
(AF/acre)

(1) (2) (3)

More Reductions × Post 0.003 0.000 0.020
(0.002) (0.003) (0.027)

More Reductions ×Middle 0.003 0.000 0.016
(0.002) (0.003) (0.018)

More Reductions 0.000 0.005 0.134
(0.001) (0.003) (0.078)

Distance to boundary X X X
Distance to boundary ×More Reductions X X X

Year-Subbasin Pair-Boundary Segment FE X X X
Year FE × Surface water supplies X X X
Year FE × Lagged surface water X X X

Observations 6,242,234 13,924,988 7,202,578
Clusters 104 104 104

Notes: Table reports regression estimates of Equation 9 in the paired sample, which includes all observa-
tions within 15 km of the boundary between pairs of neighboring subbasins, with all such pairs stacked
into one dataset. Observations are fields or units of land, most commonly quarter quarter sections, about 40
acres, from the Public Land Survey System, per year. “More Reductions” is a binary indicator for whether
the field lies in the subbasin with greater expected future pumping reductions under SGMA than its neigh-
bor, within each pair. “Post” is a binary indicator for the post-treatment period after future reductions under
SGMA became clearer (2020-22); “Middle” is a binary indicator for the coordination period (2014-19 for
wells and 2015-19 for the other variables) after SGMA passed. Water use intensity is an index constructed
from remotely sensed land use data and scientific estimates of crop-specific water use. Well construction is
drawn from required state reports. Perennial crops are observed from remotely sensed land use data. Data
begin in 1993 for wells and 2007 for the other outcome variables. Observations are weighted by area and a
triangular kernel in distance to boundary. Standard errors (in parentheses) are clustered by GSA.
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Recall that the average difference in future reductions between neighbors represented by
the “More Reductions” treatment variable is about the same as the sample average value
of future reductions, so we can interpret its effect as the effect of SGMA overall without
further scaling.

Estimates for other two outcome variables are considerably more precise. For new
well construction, we can reject an anticipatory response in either direction of 0.006 per
square mile per year. This value is small compared with the sample mean of 0.043 per
square mile per year. For water use intensity, we can reject an anticipatory increase of
0.06 AF/acre or an anticipatory decrease of 0.02 AF/acre per year, again small compared
with the sample mean value of 2.9 AF/acre.

6.5 Robustness

We explore the sensitivity of our results to different controls, ways of measuring treat-
ment status, and to alternative sample definitions. Figure 11 plots estimates of the overall
difference-in-difference coefficient from equation 9, for each of our three outcome vari-
ables, for a range of modifications to the baseline specification.

The first row presents our base (preferred) specification, which corresponds to the
estimates in Table 2. Recall that our baseline treatment variable is a binary indicator for
whether or not a field is within a GSA facing greater future restrictions than its neighbor.
In the second row, we instead use the continuous measure of expected future pumping
restrictions, in units of AF/acre, as described in Section 4.1. Coefficient estimates here
are in different units; they give the change in outcomes due to a one AF/acre increase
in overdraft in the years following the announcement of the policy. Quantitatively, they
cannot be directly compared to the base specification, so the fact that the confidence
intervals are wider does not mean that the estimates are less precise. Directionally, they
tell a similar story: we do not see evidence that future pumping reductions affect present
decisions.

Next, we narrow our analysis to a comparison that is a priori likely to respond more
strongly to groundwater restrictions: areas outside of surface water districts. These re-
gions are solely dependent on groundwater, so a given reduction in pumping constitutes
a greater share of their total water use. They also may be asked to shoulder a greater
share of the pumping reductions within a given GSA, since they may be responsible for
a greater share of groundwater extraction in the past and present. In row 3, we restrict
our sample to only areas outside of water districts, but find similar results across all three
outcome variables.
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Figure 11: Robustness of Treatment Effects

Note: Figure reports difference-in-difference estimates from equation 9, pooled across
years in the post-treatment and pre-treatment periods. Each row presents results from a
different regression specification for all three outcome variables. Horizontal bars denote
95% confidence intervals.
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We next vary the bandwidth used to construct the paired sample, which restricted our
sample to observations within 15 km of the boundary between neighboring subbasins.
Larger bandwidths allow us to include more data and improve precision, but smaller
bandwidths can reduce concerns about omitted variables. In the next four rows, we report
estimates from constructing the paired sample using four alternative bandwidths: 5, 10,
25, and 50 km.32 Marginally significant positive results are seen in new perennial plant-
ings for larger bandwidths, but they are negative for smaller bandwidths. Overall, we find
that varying the bandwidth used to construct the sample does not change the conclusions
of null results across outcome variables.

It could be that changes in pumping behavior on one side of the boundary could influ-
ence those on the other side, for example, through changes in the depth to the groundwater.
To alleviate concerns regarding spillover effects, lines 8-10 show results for specifications
that parse the control group by distance to the border (less than 5km, 5-10km, and 10-
15km) in an indirect test of whether behavior changes with proximity to the boundary.
One drawback of excluding parcels close to the boundary in these specifications is that
the remaining parcels become less comparable. Holding the treatment group constant,
we see that coefficient estimates remain statistically insignificant irrespective of control
group and outcome variable. We find no evidence that farmers very close to the boundary
are responding differently than those further away, suggesting that spillover effects are
not a concern.

We next check to see if our results are sensitive to the choice of treatment variable. Re-
call that our preferred treatment variable was derived from an average across three proxy
variables: modeled overdraft, reported overdraft, and projected reduction. Rows 11-13
show results with alternative treatment variables that instead use each of these proxies
individually. While the pooled treatment effect on new well construction appears to vary
by the choice of proxy, results for other outcomes variables are stable to this choice.
Robustness of our results to the choice of treatment variable suggests that expectations
about future supply-side strategies (such as purchasing additional surface water) to avoid
groundwater cutbacks, which would be captured in the projected reduction variable but
not overdraft estimates, are not driving our results. The story is similar with one additional
variation on our binary treatment variable, which considers basins that are deemed by the
state to be in conditions of critical overdraft (row 14). While two estimates here are sta-
tistically significant, further investigation (not shown here) reveals that they in turn fail to

32Although optimal bandwidths can be calculated in a basic RD setting, it is not straightforward to do so
while incorporating a pre/post difference, spatial correlation, a multidimensional cutoff, and pooling across
subbasin comparisons.
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survive minor specification changes and do not show patterns of heterogeneity that align
with theory. We also note that after conducting many null hypothesis tests, we should
expect a few to be statistically significant; otherwise our confidence intervals would be
too wide.

A final set of robustness checks relates to our choice of control variables and the
inclusion or exclusion of various fixed effects. We test the sensitivity of our baseline
results to the exclusion of (a) border distance control and kernel weights, (b) surface water
controls, and (c) border segment fixed effects, and (d) to the inclusion of field fixed effects.
Across alternative specifications, results are consistent: statistically and economically
insignificant effects in the post-SGMA period, estimated with similar magnitudes and
precision to results in the main table.

7 Discussion

The precisely estimated zero effects of future pumping restrictions on new perennial plant-
ings, new well construction, and crop water intensity suggest that the policy is not yet
altering extraction or investment in water-intensive production technologies. Across the
board, we find that null effects are robust across specifications for all outcome variables,
with no detectable heterogeneity. No consistent pattern emerges across this large swath
of alternative specifications.

To interpret these empirical results, we turn back to the theoretical model. Our theoret-
ical model showed how both investment and net extraction (the effect of future regulation
on current extraction through all channels) changed with beliefs about future water supply.
Under certain conditions, countervailing Green Paradox and early-decline effects might
cancel out, leaving zero effects on net. But in fact, we can rule out this possibility, because
we are able to look at effects on both extraction and investment. The conditions for zero
effects are different for different outcomes (bN = ps for investment and bN = psξ for
extraction), and they cannot be true simultaneously. This leaves us with the remaining ex-
planation: that a high value of farmers’ private discount rate deflates away considerations
that are at least 10 to 20 years down the road, leaving the effects small.

Another potential explanation for null effects could be that farmers’ true beliefs about
future regulation are smaller than what our measures are capturing. This would manifest
in our model as an attenuation bias from overestimating ȳ. This could be due to either lack
of salience – perhaps landowners lack information – or they may have low confidence in
the enforcement of the regulation. If farmers perceive the future restrictions to be small
or unenforceable, then any effects on current extraction may be too small to detect. There

42



is no one clear way of knowing what the future regulation will be. But several pieces of
evidence suggest that this is not a likely explanation. First, farms in the Central Valley are
large on average and sophisticated, with farmers taking future water supplies into account,
particularly for long-term perennial crops like nut and fruit trees. SGMA has dominated
local news headlines about water since its passing and rural appraiser reports confirm that
landowners are taking this regulation into consideration with evidence of impacts to land
prices (ASFMRA, 2018, 2019, 2020). Second, a meaningful share of the GSA governing
board members are themselves farmers, with the majority of board seats being held by
irrigation districts and other water or land agencies that are cooperatively governed by
local landowners (Wardle et al., 2021). Irrigators are not only likely well-informed, but
are often primary decision-makers when it comes to SGMA implementation. Since stake-
holder engagement is codified by law under SGMA, even small-scale farmers that may not
be be involved with governance are being reached though GSA public engagement and
outreach. Finally, SGMA legislates that the state serves as a backstop for non-compliant
GSAs.

One other related but distinct potential explanation is measurement error. Perhaps our
measures of future regulatory stringency are all noisy proxies for farmers’ unobservable
beliefs, which could result in attenuation bias if the noise is classical (or stranger patterns
if not). Farmers and GSAs may possess private information about local overdraft and
the likelihood of success of proposed projects that could differ from publicly available
reports. Although there is considerable scientific and policy uncertainty in the true extent
of future regulations, measurement error should only be a major concern if farmers hold
beliefs that are not well predicted by the available public information. We see this as
less likely, since SGMA implementation has been a highly salient issue in California’s
agricultural communities for years. Regardless, our results can still be interpreted as con-
temporaneous responses to the best publicly available information about SGMA’s future
regulatory stringency.

8 Conclusion

This paper studies whether producers respond to future groundwater regulation by chang-
ing groundwater extraction or investing in long-term agricultural capital like planting
perennial crops and constructing new irrigation wells. Our theoretical model shows for-
mally that a Green Paradox can occur for groundwater, but that it is unlikely in conditions
of full open access. Allowing for investment opportunities like adopting water-intensive
production technology – a main mechanism for farmers to increase groundwater use –
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complicates the story and allows for the possibility of an anticipatory decline in extraction.
Our model generates testable scenarios that we take to data on California’s agricultural
groundwater.

Empirically, we evaluate the early effects of California’s Sustainable Groundwater
Management Act of 2014, a sweeping groundwater regulation that is affecting over 95%
of the agricultural groundwater pumping in the state. The regulation is particularly re-
markable given the fact that groundwater use was largely open access prior to its passing.
The policy required groundwater agencies to establish sustainable pumping criteria and
develop plans for how to achieve that over the next two decades. The decentralized nature
of the mandate led to large variation in expected future pumping restrictions across the
state, creating a policy experiment to study questions about anticipatory behavior.

Our analysis uses spatial land use data for all agricultural parcels subject to the leg-
islation and estimates how groundwater extraction and farmland investments responded
to changes in future pumping access. Although investments in perennial crops have in-
creased by nearly 50% since SGMA passed at the end of 2014, we find that this boom
occurred despite, not because of, the policy. Likewise, when comparing within pairs of
neighboring subbasins that face greater and lesser future pumping restrictions, we find
no evidence of changes in water use intensity or new well construction in basins facing
greater future pumping restrictions. Our theoretical model suggests that the most likely
explanation for our findings – that SGMA is not yet altering extraction or investment –
is that the regulation is far enough in the future that private discount rates diminish its
relevance and shrink both types of anticipatory motives.

More broadly, our results suggest that long implementation horizons do not automati-
cally produce a gradual transition to a new policy regime. If this is one of the motivations
of delaying policy implementation, it may not result in the behavior that regulators expect.
In principle, a long anticipatory period could introduce perverse incentives as producers
race to extract the resource before the regulation binds, though we show that this is less of
a concern for common-pool resources under open access. Alternatively, as in our setting,
the policy changes may simply lie too far in the future to meaningfully affect behavior
today, due to private discounting. Policymakers cannot rely on private actors to make
anticipatory adjustments that ease the transition to the regulated state.
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A Appendix: Proofs

A.1 Proof of Equations 2 and 3

To find a Markov perfect equilibrium, we first find the best response for user 1 conditional
on the strategies of all other N−1 users. The Lagrangian of this problem is:

L1 =
∞

∑
t=0

(1+ r)−t[B(y1t)− c(x1t)y1t
]
+

∞

∑
t=0

µ1t

[
x1t +g− 1

N

N

∑
j=1

y jt− x1,t+1

]
.

Treating other users’ extraction y jt as fixed for j > 1, the first-order conditions are:

y1t : (1+ r)−t[B′(y1t)− c(x1t)
]
− 1

N µ1t = 0 ∀t

x1t : −(1+ r)−tc′(x1t)y1t +µ1t−µ1,t−1 = 0 ∀t > 0

µ1t : x1t +g− 1
N

(
y1t +∑

N
j=2 y jt

)
− x1,t+1 = 0 ∀t.

Users are identical, so their best responses are symmetric. Therefore, there is a Nash
equilibrium in each period in which these first-order conditions hold for each user i:

yit : (1+ r)−t[B′(yit)− c(xit)
]
− 1

N µit = 0 ∀i, t

xit : −(1+ r)−tc′(xit)yit +µit−µi,t−1 = 0 ∀i, t > 0

µit : xit +g− yit− xi,t+1 = 0 ∀i, t.

Rearranging the first condition reveals Equation 2. To obtain Equation 3, we can substitute
the first-order conditions for yit and yi,t−1 into the one for xit and rearrange:

−(1+ r)−tc′(xit)yit = µi,t−1−µit

−(1+ r)−tc′(xit)yit = (1+ r)−(t−1)[B′(yi,t−1)− c(xi,t−1)
]
N− (1+ r)−t[B′(yit)− c(xit)

]
N

− 1
N

c′(xit)yit = (1+ r)
[
B′(yi,t−1)− c(xi,t−1)

]
−B′(yit)+ c(xit)

(1+ r)
[
B′(yi,t−1)− c(xi,t−1)

]
= B′(yit)− c(xit)+

1
N
(−c′(xit))yit

B′(yi,t−1)− c(xi,t−1) = (1+ r)−1[B′(yit)− c(xit)]+(1+ r)−1 1
N
(−c′(xit))yit

B′(yit)− c(xit) = (1+ r)−1[B′(yi,t+1)− c(xi,t+1)
]
+(1+ r)−1 1

N
[−c′(xi,t+1)]yi,t+1.
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A.2 Proof of Proposition 1

Starting with the Lagrangian from before for user i, expanding sums, and substituting the
assumptions yi1 = ȳ and xit = xi2 and yit = g for all t ≥ 2:

L =
∞

∑
t=0

(1+ r)−t[B(yit)− c(xit)yit
]
+

∞

∑
t=0

µit

[
xit +g− 1

N

N

∑
j=1

y jt− xi,t+1

]
= B(yi0)− c(xi0)yi0 +(1+ r)−1[B(yi1)− c(xi1)yi1

]
+

∞

∑
t=2

(1+ r)−t[B(g)− c(xi2)g
]
+

µi0

[
xi0 +g− 1

N

N

∑
j=1

y j0− xi1

]
+µi1

[
xi1 +g− ȳ− xi2

]
+

∞

∑
t=2

µit

[
xi2− xi2

]
= B(yi0)− c(xi0)yi0 +(1+ r)−1[B(ȳ)− c(xi1)ȳ

]
+(1+ r)−1 1

r

[
B(g)− c(xi2)g

]
+

µi0

[
xi0 +g− 1

N

N

∑
j=1

y j0− xi1

]
+µi1

[
xi1 +g− ȳ− xi2

]
.

The third equality uses the fact that ∑
∞
t=1(1+ r)−t = r−1 and therefore ∑

∞
t=2(1+ r)−t =

r−1(1+ r)−1, through either substitution or a change of variables.
The first-order conditions of this new Lagrangian are:

yi0 : 0 = B′(yi0)− c(xi0)−
1
N

µi0

xi1 : 0 = −(1+ r)−1c′(xi1)ȳ−µi0 +µi1

xi2 : 0 = −(1+ r)−1 1
r

c′(xi2)g−µi1

and the Euler equation is:

µi0 = µi1− (1+ r)−1c′(xi1)ȳ

N
[
B′(yi0)− c(xi0)

]
= −(1+ r)−1 1

r
c′(xi2)g− (1+ r)−1c′(xi1)ȳ

B′(yi0)− c(xi0) = −(1+ r)−1 1
N

[1
r

c′(xi2)g+ c′(xi1)ȳ
]

B′(yi0)− γ + psxi0 = −(1+ r)−1 1
N

[1
r
(−ps)g+(−ps)ȳ

]
B′(yi0)− γ + psxi0 = (1+ r)−1 1

N
ps
[1

r
g+ ȳ

]
.
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Using the Implicit Function Theorem:

G := B′(yi0)− c(xi0)− (1+ r)−1 1
N

ps
[1

r
g+ ȳ

]
= 0

∂G
∂yi0

= B′′(yi0)

∂G
∂ ȳ

= −(1+ r)−1 1
N

ps

dyi0

dȳ
= − ∂G/∂ ȳ

∂G/∂yi0
=

ps
(1+ r)NB′′(yi0)

.

B(y) is concave, so B′′(y) is negative, and {p,s,r,N} are all positive, so this derivative is
always negative.

A.3 Proof of Lemma 1

Starting with the Euler equation above and taking other users’ investment decisions as
given, we substitute in the benefit function parameterization for each investment choice:

a−by0
i0− γ + psxi0 =

1
N
(1+ r)−1 ps

[1
r

g+ ȳ
]

a+β −byI
i0− γ + psxi0 =

1
N
(1+ r)−1 ps

[1
r

g+ ȳ
]

Substituting these equations to find yI
i0− y0

i0:

−by0
i0 = β −byI

i0

byI
i0−by0

i0 = β

yI
i0− y0

i0 = β/b.

This expression is always positive, since both β and b are positive.

A.4 Proof of Proposition 2

The probability of investment is Ii = Pr(Ki ≤ Θi) = FK(Θi), and the probability density
function is defined as fK(Θi) := dFK(Θi)/dΘi. Applying the Chain Rule:

dIi

dȳ
=

dFK(Θi)

dȳ
=

dFK(Θi)

dΘi

dΘi

dȳ
= fK(Θi)

dΘi

dȳ
.

The remaining task is to find dΘi/dȳ.
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The return on investment Θi is defined as:

Θi :=
∞

∑
t=0

(1+ r)−t
[
BI(yI

it)− c(xI
it)y

I
it

]
−

∞

∑
t=0

(1+ r)−t
[
B0(y0

it)− c(x0
it)y

0
it

]
.

Substituting in the cost function parameterization and rearranging:

Θi =
∞

∑
t=0

(1+ r)−t
[
BI(yI

it)−B0(y0
it)− c(xI

it)y
I
it + c(x0

it)y
0
it

]
=

∞

∑
t=0

(1+ r)−t
[
BI(yI

it)−B0(y0
it)− (γ− psxI

it)y
I
it +(γ− psx0

it)y
0
it

]
=

∞

∑
t=0

(1+ r)−t
[(

BI(yI
it)−B0(y0

it)
)
− (yI

it− y0
it)γ +(xI

ity
I
it− x0

ity
0
it)ps

]
.

Expanding the sum to 3 periods:

Θi =
[(

BI(yI
i0)−B0(y0

i0)
)
− (yI

i0− y0
i0)γ +(xI

i0yI
i0− x0

i0y0
i0)ps

]
+

(1+ r)−1
[(

BI(yI
i1)−B0(y0

i1)
)
− (yI

i1− y0
i1)γ +(xI

i1yI
i1− x0

i1y0
i1)ps

]
+

∞

∑
t=2

(1+ r)−t
[(

BI(yI
i2)−B0(y0

i2)
)
− (yI

i2− y0
i2)γ +(xI

i2yI
i2− x0

i2y0
i2)ps

]
.

Substituting in yi1 = ȳ and yit = g for t ≥ 2:

Θi =
[(

BI(yI
i0)−B0(y0

i0)
)
− (yI

i0− y0
i0)γ +(yI

i0− y0
i0)xi0 ps

]
+

(1+ r)−1
[(

BI(yI
i1)−B0(y0

i1)
)
− (ȳ− ȳ)γ +(xI

i1ȳ− x0
i1ȳ)ps

]
+

∞

∑
t=2

(1+ r)−t
[(

BI(yI
i2)−B0(y0

i2)
)
− (g−g)γ +(xI

i2g− x0
i2g)ps

]
=

[(
BI(yI

i0)−B0(y0
i0)
)
− (yI

i0− y0
i0)γ +(yI

i0− y0
i0)xi0 ps

]
+

(1+ r)−1
[(

BI(yI
i1)−B0(y0

i1)
)
+(xI

i1− x0
i1)ȳps

]
+

∞

∑
t=2

(1+ r)−t
[(

BI(yI
i2)−B0(y0

i2)
)
+(xI

i2− x0
i2)gps

]
.

Substituting in the equations of motion, holding constant the extraction choices of other
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users:

Θi =
[(

BI(yI
i0)−B0(y0

i0)
)
− (yI

i0− y0
i0)γ +(yI

i0− y0
i0)xi0 ps

]
+

(1+ r)−1
[(

BI(yI
i1)−B0(y0

i1)
)
− 1

N
(yI

i0− y0
i0)ȳps

]
+

∞

∑
t=2

(1+ r)−t
[(

BI(yI
i2)−B0(y0

i2)
)
− 1

N
(yI

i0− y0
i0)gps

]
=

(
BI(yI

i0)−B0(y0
i0)
)
+(yI

i0− y0
i0)(xi0 ps− γ)+(

BI(ȳ)−B0(ȳ)
)
(1+ r)−1− (yI

i0− y0
i0)ȳ

1
N

ps(1+ r)−1 +(
BI(g)−B0(g)

)
r−1(1+ r)−1− (yI

i0− y0
i0)

1
N

gpsr−1(1+ r)−1.

How does Θi depend on the period-1 quantity limits? Taking the derivative with re-
spect to ȳ:

dΘi

dȳ
= B′I(y

I
i0)

dyI
i0

dȳ
−B′0(y

0
i0)

dy0
i0

dȳ
+(

dyI
i0

dȳ
−

dy0
i0

dȳ
)(xi0 ps− γ)+

(
B′I(ȳ)−B′0(ȳ)

)
(1+ r)−1− (

dyI
i0

dȳ
−

dy0
i0

dȳ
)ȳ

1
N

ps(1+ r)−1 +

−(yI
i0− y0

i0)
1
N

ps(1+ r)−1− (
dyI

i0
dȳ
−

dy0
i0

dȳ
)

1
N

gpsr−1(1+ r)−1

= B′I(y
I
i0)

dyI
i0

dȳ
−B′0(y

0
i0)

dy0
i0

dȳ
+

(
dyI

i0
dȳ
−

dy0
i0

dȳ
)(xi0 ps− γ− 1

N
ps(1+ r)−1(ȳ+gr−1))+(

B′I(ȳ)−B′0(ȳ)
)
(1+ r)−1− (yI

i0− y0
i0)

1
N

ps(1+ r)−1.
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We know dyi0/dȳ from Proposition 1. Plugging in equation 4:

dΘi

dȳ
= B′I(y

I
i0)

ps
N(1+ r)B′′I (y

I
i0)
−B′0(y

0
i0)

ps
N(1+ r)B′′0(y

0
i0)

+

(
ps

N(1+ r)B′′I (y
I
i0)
− ps

N(1+ r)B′′0(y
0
i0)

)(xi0 ps− γ− 1
N

ps(1+ r)−1(ȳ+gr−1))+

(
B′I(ȳ)−B′0(ȳ)

)
(1+ r)−1− (yI

i0− y0
i0)

1
N

ps(1+ r)−1

=
1
N
(1+ r)−1 ps

[
B′I(y

I
i0)

B′′I (y
I
i0)
−

B′0(y
0
i0)

B′′0(y
0
i0)

]
+

1
N
(1+ r)−2 ps

[
1

B′′I (y
I
i0)
− 1

B′′0(y
0
i0)

]
(xi0 ps− γ− 1

N
ps(1+ r)−1(ȳ+gr−1))+

(
B′I(ȳ)−B′0(ȳ)

)
(1+ r)−1− (yI

i0− y0
i0)

1
N

ps(1+ r)−1.

Substituting in the parameterized benefit functions and equation 5:

dΘi

dȳ
= − 1

N
(1+ r)−1 ps

[
a+β −byI

i0
b

−
a−by0

i0
b

]
+(

a+β −bȳ−a+bȳ
)
(1+ r)−1− (yI

i0− y0
i0)

1
N

ps(1+ r)−1

= − 1
bN

(1+ r)−1 ps
[

β −b(yI
i0− y0

i0)

]
+β (1+ r)−1− (yI

i0− y0
i0)

1
N

ps(1+ r)−1

− 1
bN

(1+ r)−1 ps
[

β −β

]
+β (1+ r)−1− (yI

i0− y0
i0)

1
N

ps(1+ r)−1

= β (1+ r)−1− (yI
i0− y0

i0)
1
N

ps(1+ r)−1

= β (1+ r)−1−β
1

bN
(1+ r)−1 ps

= β (1+ r)−1
[

1− ps
bN

]
.

Finally, we can plug this expression into the equation at the start of this proof:

dIi

dȳ
= fK(Θi)β (1+ r)−1

[
1− ps

bN

]
.

54



A.5 Proof of Proposition 3

From Proposition 1, and substituting in the benefit function parameterization for either
investment decision, we have:

∂yi0

∂ ȳ
=

ps
(1+ r)NB′′(yi0)

=−(1+ r)−1 ps
bN

.

And from Proposition 2, we have:

(
yI

i0− y0
i0
)dIi

dȳ
= fK(Θi)

β 2

b
(1+ r)−1

[
1− ps

bN

]
.

Totally differentiating yi0(ȳ, Ii(ȳ)) and substituting in the expressions above:

dyi0

dȳ
=

∂yi0

∂ ȳ
+
(
yI

i0− y0
i0
)dIi

dȳ

= −(1+ r)−1 ps
bN

+ fK(Θi)
β 2

b
(1+ r)−1

[
1− ps

bN

]
= (1+ r)−1

[
fK(Θi)

β 2

b
−
(

1+ fK(Θi)
β 2

b

) ps
bN

]
.

= (1+ r)−1
(

1+ fK(Θi)
β 2

b

)[ fK(Θi)
β 2

b

1+ fK(Θi)
β 2

b

− ps
bN

]
.

Defining

ξ :=
(

fK(Θi)
β 2

b

)−1
+1

=
1+ fK(Θi)

β 2

b

fK(Θi)
β 2

b

and substituting it into the expression above:

dyi0

dȳ
= (1+ r)−1

(
1+ fK(Θi)

β 2

b

)[
ξ
−1− ps

bN

]
.

Next, we sign the factors in this expression. All of {r, fK,β ,b} are positive, so (1+
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r)−1
(

1+ fK(Θi)
β 2

b

)
is positive, and we can ignore it:

sign
(dyi0

dȳ

)
= sign

(
ξ
−1− ps

bN

)
.

Therefore, dyi0/dȳ > 0 when ξ−1 > ps
bN , or bN > psξ . Similarly, dyi0/dȳ < 0 when

bN < psξ , and dyi0/dȳ = 0 when bN = psξ .
Finally, we can split the range of bN into the three regimes {(−∞, ps),(ps, psξ ),(psξ ,∞)}

because { fK,β ,b, p,s} are all positive, meaning that ξ > 1 and therefore ps < psξ .
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